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Abstract 

The 𝑝-compact-regions problem involves generating a fixed number (p) of regions from n atomic polygonal 

units with the objective of maximizing the compactness of each region. Compactness is a shape factor 

measuring how closely and firmly the polygonal units in a region are packed together. A compact polygonal 

region has the advantages of being homogeneous and maximizing the accessibility of all points within that 

region, therefore it is useful in a large number of real-world applications, such as in conservation planning, 

political district partitioning, and the proposed application in this paper concerning regionalization for urban 

economic modeling. This paper reports our efforts in designing a heuristic framework that involves semi-

greedy growth and local search to solve the p-compact-regions problem to optimality or near-optimality. We 

apply this model to support urban economic simulation, in which activities need to be aggregated from the 

4,109 Transportation Analysis Zones (TAZs) of six southern California counties into 100 regions to achieve 

desired computational feasibility of the economic simulation model. Spatial contiguity, physiography, political 

boundaries, the presence of local centers, and intra-zonal and inter-zonal traffic are considered, and efforts are 

made to ensure consistency of selected properties between the disaggregated and aggregated regions. This work 

makes an original contribution in the development of a highly extendable and effective solution framework to 

allow researchers to investigate large, real, non-linear regionalization problems and find practical solutions. 

Keywords: Spatial optimization, greedy, heuristic, compactness, clustering, moment of inertia, simulated annealing, 

TABU, GRASP, regionalization, zoning, clustering 
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1. Introduction 

The p-compact-regions problem involves aggregating n spatially contiguous polygonal units into p regions 

(𝑝 ≤ 𝑛) while maximizing each region’s compactness, potentially optimizing other defined objectives  and 

satisfying the constraint that the contiguity of each resulting polygonal region must be preserved (Li et al. 

2014). This problem differs from traditional clustering algorithms, such as centroid-based models (K-means) 

or density models (DBSCAN: Density-Based Spatial Clustering of Applications with Noise), in that the set of 

data to cluster in a p-compact-regions problem is a subdivision of a larger continuous surface, such as 

clustering all census tract data within the state of Arizona into p regions, rather than a dataset that can be 

modeled as point data, such as the type of dataset used in K-means. The p-compact-regions problem is indeed 

an optimization problem, involving one or more predefined objectives, such as minimizing dissimilarity 

among basic units within a cluster/region and maximizing the compactness of the resulting regions. In 

clustering polygonal spatial objects, shape and contiguity become essential factors to consider in the 

algorithmic design.  

Compactness of a polygonal object is usually considered an important indicator of shape in 

regionalization problems. Compactness is acknowledged as one of the most intriguing properties of a shape 

(Angel et al. 2010) because a compact region is likely to be homogeneous, sharing common attributes and 

properties (Li et al. 2013a). The contiguity constraint for the p-compact-regions problem, on the other hand, 

ensures that each pair of polygonal units within the same region can be connected by a path which falls entirely 

within the region. According to the literatures of computer science, geographic information science 

(GIScience), and regional science, this type of clustering can also be termed zonation, districting, and 

regionalization—all of which apply to many domains (Duque et al. 2011). The applications include 

discovering satisfactory coverage of emergency medical service facilities for first aid (Gendreau et al.2005; 

Alsalloum and Rand 2006; Sorensen and Church 2010); identifying regions that maximize the coverage of 

selected species in conservation planning (Church et al. 1996); partitioning an area into compact electoral 

districts to avoid political gerrymandering (Young 1988; Pang et al. 2010); and designing compact sales 

territories to maximize profit and minimize costs of customer service (Hess and Samuels 1971).  
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 In this paper, we propose a heuristic-based solution framework for a p-compact-regions problem 

designed for determining the planning units in a microeconomic model of urban land use and transportation 

called RELU-TRAN (Alex and Liu 2007). RELU-TRAN is a dynamic general-equilibrium model of a 

metropolitan economy and its uses of land. It equilibrates floor space, land and labor markets, and the market 

for the products of industries, treating development (construction and demolition), spatial inter-industry 

linkages, commuting, and discretionary travel. Mode choice and equilibrium congestion on the highway 

network is treated by integrating an algorithm involving stochastic user equilibrium. To facilitate public policy 

analysis in the greater Los Angeles metropolitan region, researchers from SUNY Buffalo, University of 

California Santa Barbara, University of California Riverside, and Arizona State University have formed a 

collaborative team to revolutionize the use of this computable economic model (Li et al. 2013b).  

 One fundamental task of this research effort is to generate model zones for numerical simulation from 

4,109 Traffic Analysis Zones (TAZs) to achieve the computational feasibility of the RELU-TRAN model for 

the prediction of urban changes in Southern California. Model zone compactness is considered a primary goal 

because it implies maximum accessibility of all parts within each zone. Meanwhile, factors including spatial 

contiguity, the coincidence of model-zone boundaries with physiographic features and political boundaries, 

and the patterns of intra-zonal and inter-zonal traffic need to be considered. This is a “supreme” problem for 

three reasons. First, it requires iterative computation among more than 4,000 atomic units, which is large in 

comparison with the literature on similar problems. Second, it needs to address many constraints.  Third, the 

objective function is complex and non-linear. 

 To solve this particular p-compact-regions problem to near-optimality, we propose an efficient 

heuristic framework that is extendable to integrate a variety of popular heuristic approaches and compactness 

measures for the purpose of identifying the best configuration. The following sections provide detailed 

discussions on previous work (Section 2), formulation of the real-world p-compact-regions problem in the 

context of urban economic modeling (Section 3), design and implementation of the heuristic solution 

framework (Section 4 and 5), and a series of experiments to demonstrate the performance of the proposed 

method (Section 6).  In Section 7, we conclude the work and discuss future research directions.  

2. Literature 
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Over the past several decades, researchers have developed a number of methods for providing solutions to 

versions of the p-regions problem (Cova and Church, 2000). Optimal solutions for versions requiring 

contiguous but non-compact zones have been obtained using integer programming and integer goal 

programming. However, when compactness is a requirement the computational complexity and the non-linear 

nature of the p-regions problem makes it difficult to formulate and solve using general-purpose optimization 

software.  

Fischer and Church (2003) used an indirect measure of compactness,  minimizing the length of the 

outside perimeter of a selected set of areas, as a means to cluster selected units and encourage compactness. 

This was accomplished using an integer-linear optimization model. This method provides only a rough 

estimation of compactness. A narrow and long rectangle and a square which have the same perimeter would 

be considered equally compact, but in fact, the square shape is much more compact than the rectangle. Though 

having its drawbacks, this approach is often used in designing an integer-programming model for site 

configuration and selection [e.g. Li (1990), Minor and Jacobs (1994), McGarigal and Marks (1995), Williams 

and ReVelle (1996), and Cova and Church (2000)]. Besides this measure, a number of other direct measures 

have also been proposed, for example, area-perimeter measures, reference shape, and dispersion of elements 

within an area. The most popular area-perimeter measure is the Iso-Perimeter Quotient (IPQ) by Osserman 

(1978). The IPQ is defined as the area (A) times four 𝜋  divided by perimeter (𝑝) squared (
4𝜋A

𝑃2 ). The second 

category is to compare the area of a shape to the area of a reference shape, such as the smallest circle that 

circumscribes the shape (Kim and Anderson 1984). This measure is not scale-invariant and is not additive; 

therefore, it is not suitable for a regionalization problem in which basic units need to be successively 

aggregated. The third category is to measure compactness by assessing the dispersion of elements on a shape. 

The most popular measure of this kind is the moment of inertia approach and the compactness of a shape is 

defined as 
A2

2𝜋𝐼
, where I is the area moment of inertia of the shape (Li et al. 2013a). These methods, although 

better than the perimeter approach, are rarely used in optimization models, because they are non-linear and 

cannot be solved using a integer-linear optimization solver.  

This situation has led researchers to implement heuristics, such as TABU, Simulated Annealing (SA), 

Greedy, and GRASP (Greedy Randomized Adaptive Search Procedure), to solve this difficult problem. 
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Among popular heuristic algorithms, the greedy algorithm (Black 2005) is often used at the region-

construction phase to generate initial region partition plans efficiently, whereas TABU, SA, and GRASP are 

mostly used at the local-search phase of a regionalization procedure. This phase starts from some initial 

feasible solution, and moves towards a better solution by reassigning selected atomic polygonal units sitting 

on the boundary of each region.  

The strategy of a greedy algorithm is to always make the best (the optimal, but myopic) choice at 

each stage with the anticipation that a global optimal solution could be obtained when construction of the 

region is complete. Although fast, a greedy algorithm often yields a poor local-optimal solution. Examples 

that fall in this category include Church’s PGP (patch-growing process) algorithm for identifying the optimum 

habitat patch for San Joaquin kit fox (Church et al. 2003), and Guo’s contiguity-constrained hierarchical 

clustering algorithm for clustering electoral votes for Bush in the 2004 Presidential Election (Guo, 2004). 

A GRASP algorithm begins with some initial feasible region partition plan and finds improved 

solutions through local tuning. The local tuning often adopts edge-swapping or edge-reassignment strategies. 

Edge swapping switches two atomic objects standing on the boundaries of two neighboring regions, and edge-

reassignment involves the reassignment of one atomic object on the edge of a region to its neighboring region, 

if these moves yield an improvement in the solution. The selection of which atomic objects to move is not 

purely greedy, which always takes the best candidate move; instead, it may be based on randomly selecting a 

candidate and allowing it to move to an adjacent region if doing so leads to a better solution. Therefore, 

GRASP can also be considered as a semi-greedy heuristic. GRASP was first introduced by Feo and Resende 

(1995), and then received widespread adoption in regionalization problems, such as commercial territory 

design (Rios-Mercado and Fernandez 2009; Rios-Mercado and Salazar-Acosta 2011; Carno-Belmán et al. 

2012), districting design (González-Ramírez et al. 2011), and linking habitats for multiple species (Brás et al. 

2012). 

In GRASP, non-improving moves are not allowed. A TABU search (Glover 1989; Glover 1990), in 

comparison, allows non-improving moves to move away from local optima. It adopts three strategies. First, a 

TABU list is introduced to prevent cycles by forbidding reverse moves. This list is dynamic, and after a number 

of iterations (called TABU tenure) a move is taken out of the list and is then reconsidered as a candidate move 

again. Second, TABU may force a sequence of up to k non-improving moves. Third, TABU search always 
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seeks to make the best greedy move – the move that presents the best improvement or causes the least damage. 

A TABU search stops when all possible moves are either infeasible (no more uphill moves are allowed and 

the allowed number of non-improving moves has been reached) or all feasible moves are taboo/banned. A 

taboo list usually contains elements of solutions that have been recently explored, but it could also involve a 

list of rules to force the search towards promising areas in the search space, or rules that prevent searching in 

the part of solution space that contains a known local optima. TABU has found extensive use in regionalization 

problems, such as ground water parameter zonation (Tung and Chou, 2002), political redistricting (Bozkaya 

et al. 2003), and Duque et al.’s max-p-regions problem (Duque et al. 2012). 

Simulated Annealing (SA) is another heuristic allowing non-improving moves when tuning the 

results. Different from TABU, the non-improving moves are accepted probabilistically. A SA algorithm 

simulates the process of annealing in metallurgy that involves both a heating and a controlled cooling process. 

Methodologically, the cooling process starts at a temperature 𝑇0, and descends slowly at a rate of ∝ after each 

round of local adjustment (∝ is always chosen as 0.99 or a higher value such as 0.998).  Therefore, the 

temperature at round 𝑘 is given by 𝑇 = 𝑇0 ∝𝑘−1. According to SA, if the value of Boltzman equation 𝑒∆𝑂𝑏𝑗/𝑇 

is larger than a random number at round 𝑘, then a non-improving move will be made. ∆𝑂𝑏𝑗 is the change of 

objective value after making a specific candidate move. The whole process will cease when 𝑇 reaches a 

predefined value, the temperature at which virtually no nonimproving moves are accepted. Previous work 

using SA in regionalization include those of Ricca and Simeone (2008) and Duque et al. (2012), and Li et al.’s 

MERGE algorithm (2014). Specifically, in MERGE, rather than selecting a feasible plan at random, the plan 

that brings the most increase (or least decrease) in the objective function value of a randomly selected region 

will be evaluated in the SA procedure. A new stop condition was also added to common SA to intelligently 

decide when to end the search procedure as well as to keep the best solution found. It also maintains a list of 

moves that are TABU, allowing the algorithm to exploit a larger search space to obtain better solutions. The 

adoption of these new strategies ensures better performance of MERGE than common SA and TABU 

algorithms. In the next section, we will introduce a formulation of the  p-compact-regions problem that 

addresses the needs associated with the application of the RELU-TRAN model.  
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Figure 1. Case study for the p-compact-regions problem: grouping more than 4,000 TAZs in six counties of 

Southern California 

3. Problem statement and model formalization 

In this section, we introduce the formulation of a real-world p-compact-regions problem. Our goal is to 

aggregate 𝑛 (𝑛 = 4,109) TAZs in six counties (Los Angeles, Riverside, San Bernardino, Orange, Imperial, 

and Ventura, as Fig. 1 shows) of Southern California, U.S., into approximately 𝑝 (𝑝 = 100) model zones, the 

maximal number considered feasible for the applied urban economic model of RELU-TRAN. Conceptually, 

we seek to maximize overall compactness of the model zones and at the same time preserve the spatial 

contiguity of each zone. A number of linear physiographic features have been defined, aligned along major 

mountain-range barriers, and are used to constrain the placement of model zone boundaries so as to not cross 

these features. We also constrain model zones from crossing county boundaries. A constraint on traffic flow 

is also defined, by constraining the solutions such that intra-zonal traffic is less than or equal to a defined 

proportion of total traffic entering or leaving the region. The traffic flow is measured by the total number of 
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zone-to-zone trips in multiple modes, such as drive-alone trips, shared-ride trips, etc. We also identify a set of 

economic subcenters (large shopping centers and concentrations of employment), and constrain the solution 

so that subcenters are not split between zones. To formulate this problem, consider the following parameters: 

𝑖, 𝑗: Index of units that are either subcenters (a small aggregation of TAZs) or independent TAZs  

(TAZs not part of a subcenter), 𝑖, 𝑗 ∈ [1, 𝑛] 

         𝑢: Index of zones, 𝑢 ∈ [1, 𝑝] 

         𝑣: Index of known subcenters  

         𝑡𝑖𝑗: Traffic between unit 𝑖 and unit 𝑗
 
; 

        𝐶𝑡𝑦𝑖: The county that unit 𝑖 belongs to; 

        𝑇𝑓𝑖 = ∑ (𝑡𝑖𝑗 + 𝑡𝑗𝑖)𝑛
𝑗=1 : The traffic between unit 𝑖 and all other units; 

        𝑃𝑆 = {(𝑖, 𝑗)| unit 𝑖 and unit 𝑗
 
are separated by a physiographic boundary}; 

        𝑆𝑣 = {𝑖| unit 𝑖 is a unit of subcenter  v and not an independent TAZ}; 

        𝑆𝑀 = {𝑖| unit 𝑖 is a member of a subcenter} where 𝑀 =∪ 𝑆𝑣; 

The decision variables are: 

         𝑋𝑖𝑢 = {
1, if unit 𝑖 is assigned to zone 𝑢 
0, if not                                              

   

         𝑇𝑖𝑗𝑢 = {
1, if unit 𝑖 and 𝑗 are assigned to zone 𝑢 
0, if not                                                            

        

Using this notation we can formulate the model  as follows: 

Maximize: 

∑ 𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠(𝑢)

𝑝

𝑢=1

 (1) 

Subject to:
  

∑ 𝑋𝑖𝑢 = 1,

𝑝

𝑢=1

∀𝑖 = 1,2, … 𝑛 (2) 

𝑇𝑖𝑗𝑢 ≤ 𝑋𝑖𝑢  ∀𝑖, 𝑗 = 1,2, … 𝑛; ∀𝑢 = 1, … , 𝑝 (3) 

𝑇𝑖𝑗𝑢 ≤ 𝑋𝑗𝑢  ∀𝑖, 𝑗 = 1,2, … 𝑛; ∀𝑢 = 1, … , 𝑝 (4) 

𝑋𝑖𝑢 + 𝑋𝑗𝑢 ≤ 1 + 𝑇𝑖𝑗𝑢 , ∀𝑖, 𝑗 = 1, … , 𝑛; ∀𝑢 = 1, … , 𝑝 (5) 

𝑋𝑖𝑢 + 𝑋𝑗𝑢 ≤ 1, ∀𝑢 = 1, … 𝑝, and for ∀(𝑖, 𝑗) ∈ 𝑃𝑆 (6) 
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𝑋𝑖𝑢 + 𝑋𝑗𝑢 ≤ 1, ∀𝑖, 𝑗 = 1, … , 𝑛; ∀𝑢 = 1, … 𝑝; 𝑤ℎ𝑒𝑟𝑒 𝑐𝑡𝑦𝑖 ≠ 𝑐𝑡𝑦𝑗 (7) 

∑ ∑ 𝑡𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 𝑇𝑖𝑗𝑢 ≤ 𝜃 ∑ 𝑇𝑓𝑖𝑋𝑖𝑢

𝑛
𝑖=1 , ∀𝑢 = 1, … , 𝑝 (8) 

𝑋𝑖𝑢 = 𝑋𝑗𝑢, ∀𝑣, ∀𝑖, 𝑗 ∈ 𝑆𝑣, and ∀𝑢 = 1, … , 𝑝 (9) 

𝑋𝑖𝑢 + 𝑋𝑗𝑢 ≤ 1, ∀𝑖, 𝑗 ∈ 𝑆𝑀, ∀𝑢 = 1, … , 𝑝 when 𝑖 ∈ 𝑆𝑣 𝑎𝑛𝑑 𝑗 ∉ 𝑆𝑣      (10) 

constraints to ensure contiguity                                                         (11) 

 

The objective function (1) coincides with the definition of a general model of the p-compact-regions problem, 

aiming to maximize the overall compactness of all model zones. In this case, the total number of atomic units, 

or TAZs, is 4,109 and the total number of regions, or model zones, is 𝑝 = 100. When 𝑋𝑖𝑢=1, it represents the 

assignment of unit/TAZ 𝑖 to region 𝑢. Constraint (2) ensures that each TAZ is assigned to exactly one region.  

Constraints (3)-(5) are used to define the value of 𝑇𝑖𝑗𝑢.   𝑇𝑖𝑗𝑢 = 1 when both units 𝑖 and 𝑗 are assigned to the 

same region 𝑢. Constraints 3 and 4 ensure that 𝑇𝑖𝑗𝑢 cannot equal one unless both units 𝑖 and 𝑗 assign to region 

. Constraint (5) forces 𝑇𝑖𝑗𝑢  to equal one when that is the case. Condition (6) is used to prevent the situation 

in which unit 𝑖 and unit 𝑗 are assigned to the same region 𝑢 when they are separated by a physiographic feature. 

Constraint (7) keeps two units from different counties from assigning to the same region.  Constraint (8) sums 

all traffic between every single pair of atomic units within region 𝑢, that is, intra-zonal traffic, and stipulates 

that this intra-zonal traffic must be less than or equal to a fraction 𝜃 of this zone’s total traffic, obtained by 

summing up all traffic that occurs between any pair of  atomic units within region 𝑢 and all atomic units 

(including itself) within the study area. This constraint keeps the property between zones (TAZ and model 

zone) on different geographical scales consistent, because the design principle of a TAZ is also to capture as 

many inter-zonal trips as possible. In another word, loss of the intra-zonal trips should be prevented (Miller 

and Shaw, 2011). Constraints (9) ensure that TAZs that belong to the same subcenter must be assigned to the 

same region. Constraints (10) prevent two TAZs that are members of the different subcenters from assigning 

to the same region. In addition, spatial contiguity constraints (11) within each model zone must be satisfied as 

well. Examples of spatial contiguity constraints are described in Duque et al. (2012). One of the forms 

discussed in Duque et al. (2012) would need to be appended to the above formulation to make it complete. 

The size of the problem application discussed here falls outside the range of problem sizes that can be solved 

u
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to optimality, when the compactness measure is structured in an integer-linear form, such as minimizing the 

length of the perimeter (outside boundary) of each region. Unfortunately, one of the best measures of 

compactness is based upon the moment of inertia, which is a non-linear formula. Consequently, the general 

form of the p-compact regions problem, involves a non-linear objective as well. Both size and non-linear 

features force the development of a heuristic for this problem.  

4. Methodological framework for the model 

In order to find a near-optimal solution to the p-compact-regions problem, we propose a methodological 

framework based on the combined use of randomized greedy for region generation and an edge-reassignment-

based local search to further tune and improve the results. The Region-construction phase is designed to assign 

all available basic units into the desired number of regions. As this assignment considers all basic units in the 

study area, it can be considered as a global strategy. Whereas, the local search phase designed is to fine tune 

the generated regions by reassign the TAZs on the edge of a model zone when such moves improve the 

objective. Before diving into the detailed discussion about the algorithm, we first introduce some important 

data structures.  

 Figure 2 illustrates three classes to describe an important set of data: model zone, TAZ and a region 

growth/change plan. In a model zone class, properties of a model zone, such as its area, perimeter, moment of 

inertia (used for computing compactness), and the compactness value of a model zone are defined. The sum 

of the compactness values of all model zones equals the objective function value for our problem. Other 

properties, such as intra-zonal traffic are recorded as well. This value is computed by knowing the list of TAZs 

inside of the current model zone. Therefore, the TAZs that a model zone contains are also an attribute of the 

model zone class. When all model zones finish growing, namely, when all TAZs are assigned, an overall 

model zone partition plan is generated by collecting the list of TAZs that belong to each model zone. Another 

class is the TAZ class, which records the area, perimeter, its moment of inertia and neighbor TAZs of a TAZ. 

Two TAZs are considered as neighbors if they share a common arc. These attributes of a TAZ are used for 

computing the objective function value of the model zone to which it belongs. Though sharing common 

attributes, the TAZ class and the model zone class are different in essence. The information in the TAZ class 

is static throughout the regionalization process; whereas the information of a model zone  changes as a region 

grows in size or changes. A third class is a growth or change plan for a model zone. This class is composed of 
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three elements: a TAZ to add to or remove from a model zone; the change of the objective function value (the 

change of compactness value of this model zone) brought from this change; and the properties (listed in the 

model zone class) of the model zone after this change is made. In the region growth phase, such plan always 

involves adding another TAZ; whereas in the local search phase, such plan may be involve removing a TAZ 

from a model zone or adding a TAZ. These data structures ensure the efficient execution of the regionalization 

algorithm by ‘memorizing’ the status of each model zone at each phase and the potential new status of a model 

zone if it is selected for the change (e.g. growth).    

 

Figure 2. Class design for model zone, TAZ and a region growth plan. 

Due to the nature of the objective and constraints, there is a need to tailor and address the following 

issues when implementing the region-growing procedure. First, it was decided that major employment 

subcenters, usually a small group of TAZs should be assigned to only one model zone as well as ensure that  

each model zone contains no more than one of these subcenters. Therefore, these subcenters are ideal seeds 

for growing the regions. We added to these a select set of other TAZs for seeds  (the selection procedure is 

discussed in detail in Section 5.1), so that there were a total of 100 individual seeds. The purpose of the 

algorithm is to assign all of the other TAZs in our study area to one of the 100 zones with the strict restriction 

that each TAZ can only be assigned to one model zone.  

Second, at each time only one TAZ will be assigned to a model zone, meaning that rather than 

growing simultaneously, only one model zone grows at a time. The TAZ that is assigned must lead to an 
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improvement in the objective function (or harm it the least) that is at or close to the greatest possible 

improvement (or least harm) over all possible growing plans for a model zone. We choose to not always assign 

the TAZ with the best impact on the solution because this strategy may not yield a good final solution. Rather 

than using a strict greedy algorithm, a probabilistic selection strategy is introduced to randomly select one of 

the best N choices to grow a model zone (Li et al. 2014). Using this strategy, a different model zone partition 

plan will be generated after each complete execution of the region growth procedure. This allows us to generate 

a large number of different, but good solutions with which we can apply an improvement process. Essentially, 

the process of growing regions involves two steps: 1) dealing, and 2) randomized greedy growth. The 

randomized greedy process will be described next.   

Figure 3 demonstrates the pseudo code of the randomized greedy algorithm with time complexity 

O(np), where n is the number of TAZs and p is the number of model zones. The first step is to explore and 

identify all possible plans to grow all models zones. Then for each model zone, the best N plans are saved. A 

best plan for a model zone is one which brings the most increase in its compactness by adding an unassigned 

TAZ. Next one plan is randomly selected from among the N plans for each model zone such that each zone 

now has a candidate plan to grow. .After this step, these candidate plans will be ranked, and the overall best 

plan (adding TAZ i to model zone x) will be executed. This includes updating model zone x’s properties, 

including area, perimeter, moment of inertia and adding TAZ i to the list of TAZs that model zone x 

contains. At the same time, TAZ i will be labeled as ‘taken’ to avoid duplicated assignment of this TAZ. 

After a model zone grows by an added TAZ, a new candidate plan needs to be identified for it. Any other 

models zones whose candidate plans involved adding the recently assigned TAZ i will need to be 

reexamined to find another candidate plan as a replacement. The examination process is the same as what it 

does in the first step. Because candidate plans are saved for other unaffected model zones, there is to need to 

reexamine those model zones. This strategy greatly improves the efficiency of the algorithm. The 

randomization in this process occurs in the selection of the best of the N plans for each zone. This strategy 

enlarges the effective search space even when the value of N is small (N>1). Note, when N =1, this process 

would condense to the classic greedy heuristic. 
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Figure 3. Pseudocode for region growth algorithm 

After executing the randomized greedy algorithm, an initial model zone partition plan is generated. 

To further improve the quality of the results, we employ after all TAZs have been assigned, an edge-based 

reassignment process. This edge-reassignment-based local-search module examines each TAZ that lies at the 

edge of a model zone, and evaluates moving it from its current model zone to the one across the edge/boundary, 

to seek a better solution with the requirement that no constraints are violated. The procedure will cease when 

no better solutions can be obtained by edge reassignment. The process of edge reassignment can be controlled 

by a number of strategies, like simulated annealing and TABU search. 

Figure 4 shows the system diagram of the solution framework. Three modules on the left of this 

figure stand for phases of seed selection, region construction and local search from top to bottom. The 

algorithm for region construction is greedy-based, with two strategies being used: “dealing” and 

randomization. The role of dealing is to make each region grow to a viable size by assigning (dealing) a fixed 

number of TAZs to the seeded regions. This dealing process avoids the generation of regions with weird 

shapes. It also prevents regions being generated that are very small but compact. In a compactness-driven 

regionalization problem, once a small and compact region is formed, adding any adjacent TAZ to it will 

decrease its compactness. Therefore, it will have very little chance to grow because this zone’s candidate plan 

has a negative value rather than a positive value. So the neighboring TAZs of the small and compact regions 

have to be taken by neighboring regions, resulting in regions of weird shapes, such as concave shapes. By 
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adapting the dealing strategy, each region is forced to grow to at least a realistic starting size. After the dealing 

phase, the algorithm moves towards finishing the assignment of all available TAZs using the randomized 

greedy selection method, discussed above. As randomization increases the solution space after running the 

region-construction algorithm a number of times, a set of initial region partition plans can be constructed. 

These plans will be fed into a highly extendable local-search module, in which we can plug in and test the 

performance of several popular meta-heuristics, including GRASP, TABU, and SA. When testing SA, Li et 

al.’s MERGE (Li et al. 2014) algorithm is used, as it is an SA-inspired algorithm and is proven to perform 

better than the basic SA algorithm.  

  

Figure 4. System diagram 

At each stage of region construction and local search, the algorithm module communicates 

intensively with the compactness computation module, as each time a region’s shape changes, its shape 

compactness needs to be re-calculated. The compactness computation module is also highly extendable, 

allowing the integration of various shape compactness measures, such as the Normalized Moment of Inertia 

(NMI) (Massam and Goodchild 1971; Li et al. 2013), the commonly used Isoperimetric Quotient (IPQ; 

Osserman 1978), or some indirect measure.           

During the region-construction process, the TAZ added to a model zone is selected from a pool of all 

unassigned TAZs adjacent to the model zone. Therefore, contiguity of model zones is preserved without the 



  

15 

need for a specific strategy. In the local-search phase, however, removing one TAZ from a model zone may 

potentially violate the contiguity constraint by leaving a residual zone that is split into two unconnected parts. 

To address this issue, we implement an efficient algorithm to identify the contiguity of a region. This algorithm 

relies on a dictionary recording common boundaries (arcs) between atomic units within a region, indexed by 

IDs, and another dictionary storing the pointers used in the contiguity checking process. The ID of a unit is 

the key and the ID of a neighbor to which this unit points to is its value. The algorithm operates as follows. 

For each basic unit set an initial pointer to zero. Read the first common boundary (arc) record. Suppose it 

indicates a common boundary between 𝑘 and 𝑙. If neither 𝑘 nor 𝑙’s pointer has been set, set the pointer of the 

greater of {𝑘, 𝑙} to point to the lesser of {𝑘, 𝑙}. If the pointer of 𝑘 is already set, follow the pointers until they 

terminate, say at unit 𝑖, and make 𝑙 point to 𝑖. Similarly if the pointer of 𝑙 is already set, follow its pointers and 

set the pointer of 𝑘. If pointers are already set for both 𝑘 and 𝑙 then go to the next record. Continue to process 

all records. When the records are finished, scan the pointers (the value field in the dictionary). If all pointers 

have a single non-zero value the region is contiguous. If pointers have two or more non-zero values there are 

islands. This algorithm can perform the contiguity check rapidly as it tests contiguity with a single pass of the 

boundary records. 

5. Implementation of the computational model 

In this section, we discuss in detail how the objective and constraints of the model are computed quantitatively.    

5.1 Selection of seeds 

The seeds are the starting points for growing model zones. As noted earlier, we defined a set of subcenters, 

which are areas where the employment concentration is relatively high (McDonald 1987). In this paper, these 

employment subcenters are contiguous (not necessarily compact) areas composed of TAZs, as shown in 

Figures 5(a) and (b). Based on Giuliano and Small’s procedure (1991), 51 subcenters were identified in our 

study area, including 19 in Los Angeles, 11 in Riverside, 10 in Orange, 6 in San Bernardino, 4 in Imperial, 

and 1 in Ventura Counties. One subcenter cannot be assigned to more than one model zone, and one model 

zone cannot contain more than one subcenter. Therefore, the subcenter itself can be a natural seed. Using 

subcenters as seeds to grow model zones results in the following advantages: first, Freeways and highways 

are designed to join subcenters. If one divides a metropolitan area into zones, one may choose to employ an 

aggregated representation of the freework/highway network.  The aggregated freeway/highway network will 
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better resemble (and propagate fewer aggregation errors) the actual network if the seeds are 

subcenters. Second, for transit-oriented development, transit networks tend to link subcenters.  Employing 

zoning based on subcenters makes it easier to analyze proposed transit lines using an aggregated network. 

Third, people tend to conceptualize urban space in terms of subcenters.  Thus, a zoning system based on 

subcenters will tend to accord with intuition. Fourth, in central place theory, economic activity is organized 

spatially with reference to the central places. Subcenters are central places.   

As we need 100 model zones in total, another 49 TAZs are selected randomly or manually as the 

supplemental seeds to the existing subcenter seeds. To select these supplemental seed TAZs we first identified 

junctions in the major-highway network, which tend to be areas of high population density. This selection was 

based upon the fact that such areas represented places of attraction for trips, and the intent of econometric 

model was to model land use, traffic, and housing and commercial growth. We also selected some arbitrarily 

TAZs in order to augment the subcenters and major-highway junctions. The principle for seed selection was 

to place seeds as dispersed as possible and denser highly populated areas received more seeds. With the 

exception of the subcenter seeds, the remaining seed TAZs served only to initialize the growth of model zones. 

During the edge-reassigning process, these TAZs can be swapped out of the original model zone and therefore 

will not have a great effect on the final result.  
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Figure 5(a). Seed TAZs in Ventura, Los Angeles, and Orange Counties. 

  

Figure 5(b). Seed TAZs in San Bernardino, Riverside, and Imperial Counties. 
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5.2 Compactness measure 

We implemented the compactness measure using the Normalized Moment of Inertia (NMI) as described in Li 

et al. (2013a) and the commonly used Isoperimetric Quotient (IPQ) approach. The computation of 

compactness in a regionalization process using either approach includes three parts: (1) compactness index of 

4,109 TAZ shapes, computed about the shape’s centroids; (2) the change in compactness of a model zone 

when a new TAZ is added during the region-construction phase; and (3) the change of this property when a 

TAZ is detached during edge reassignment at the local-search phase. 

𝑁𝑀𝐼𝑘 =
𝐴𝑘

2

2𝜋𝐼𝑘

 (12) 

𝐼𝑃𝑄𝑘 =
4𝜋𝐴𝑘

𝑃𝑘
2  (13) 

𝐼𝑘 = ∫ 𝑑2𝑑𝑎 (14) 

Equations (12) and (13) demonstrate how to compute the compactness index of a single shape using 

NMI and IPQ. 𝐴𝑘 is the area of a single TAZ or a region; 𝑘 is its index; 𝑃𝑘 refers to the length of its perimeter; 

𝐼𝑘 is the second moment of a single TAZ of region 𝑘 about an axis perpendicular to the region’s surface and 

passing through its centroid. Mathematically, 𝐼𝑘  is equal to the integral of the squared distance from any 

infinite small area to a region’s centroid, as shown in Equation (14). Detailed calculation of 𝐼𝑘 can be found 

in Li et al. (2013a). Both of these two measures have the same value range of (0,1]. A higher value indicates 

a more compact region and a circle receives the highest compactness index 1. By calculating the area and 

second moment of a TAZ, the compactness index NMI can be obtained. Similarly, the IPQ can be obtained 

for a TAZ once its area and perimeter are known. When a region grows, the area, perimeter, and second 

moment all change and can be computed by Equations (15)-(17):  

𝐴𝑍𝑘
′ = 𝐴𝑍𝑘

+ 𝐴𝑇𝐴𝑍𝑖
 (15) 

𝑃𝑍𝑘
′ = 𝑃𝑍𝑘

+ 𝑃𝑇𝐴𝑍𝑖
− ∑ 𝑙𝑒𝑛 (𝑎𝑟𝑐𝑇𝐴𝑍𝑗𝑇𝐴𝑍𝑖

)

𝑗

 
(16) 

 

𝐼𝑍𝑘
′ = 𝐼𝑍𝑘

+ 𝐼𝑇𝐴𝑍𝑖
+ 𝑑

𝐺(𝑍𝑘)𝐺(𝑍𝑘
′ )

2 𝐴𝑍𝑘
+ 𝑑

𝐺(𝑇𝐴𝑍𝑖)𝐺(𝑍𝑘
′ )

2 𝐴𝑇𝐴𝑍𝑖
 (17) 

, where 𝑍𝑘
′  is the new region after adding a TAZ 𝑖, 𝑙𝑒𝑛(𝑎𝑟𝑐𝑇𝐴𝑍𝑗𝑇𝐴𝑍𝑖

) is the length of the arc shared by TAZ 𝑖 

and any 𝑇𝐴𝑍𝑗  belonging to 𝑍𝑘 . 𝐺  is the centroid of a TAZ for a region, and 𝑑  is the Euclidean distance 
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between the two centroids (region and TAZ). As both the computation of NMI and IPQ are additive, a new 

data structure is defined to carry the parameters including area, perimeter, centroid, and second moment of 

both single TAZs and partial regions to calculate NMI and IPQ of a region as it changes. Therefore, once a 

region’s shape changes, there is no need to compute these values from scratch, but only the need to apply 

Equations (15)-(17).  

5.3 County boundaries and physiographic features 

One of the constraints in this optimization model is that a model zone cannot cross county boundaries or 

physiographic barriers. As shown in Fig. 1, TAZs are partitioned within counties, and therefore no single TAZ 

crosses a county boundary. To force model zones not to cross county boundaries, a topological analysis of 

(TAZ, County) containment was conducted and a hash table was established with the ID of the TAZ as the 

key and the county that it belongs to as the value. Physiographic features act as natural boundaries for model 

zones as well, since it makes little sense for a local zone gained for the purposes of modeling land use, 

economic, and transportation planning to have a mountain range running through it. In this project, two 

mountain ranges in Southern California are identified as physiographic barriers: the Peninsular Mountain 

Range and the Santa Monica Mountains. The Peninsular Mountain range crosses four counties and forms 

closed boundaries with county boundaries, dividing the four counties into sub-counties. Since neither the 

county nor physiographic boundary can be crossed, the values in the hash table can be defined as sub-county 

codes in place of the original county codes. When a candidate TAZ is selected to be added to a model zone, 

the sub-county code will be fetched from the hash-table lookup. If this TAZ is not in the same sub-county as 

all the other TAZs in the model zone, this TAZ will not be considered for adding to that zone.  

 The Santa Monica Mountain barrier requires a different approach since it does not form a closed 

boundary with county boundaries (specifically Los Angeles County). To incorporate this physiographic barrier 

into the zoning process, conflict groups were constructed of TAZs that cannot be assigned to the same model 

zone because they fall on opposite sides of the physiographic barrier. Each time a TAZ is considered for 

assignment to a model zone, the program will check whether it has a conflict with any TAZ that has already 

been included in the model zone. The above strategy guarantees that both county boundary and physiographic 

feature constraints are satisfied. 

5.4 Modeling zonal traffic 
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To restrict the size of each model zone and to keep the errors in modeling transportation flows on the 

highway network small, intra-zonal traffic is limited to be no more than a fraction of the inter-zonal traffic of 

a region.. Define 𝑍𝑘   as the set of TAZs comprising model zone k. Let 𝑡𝑖𝑗  denote the traffic observed 

between TAZ i and TAZ j (we discuss the nature and source of such data below). Finally, let 𝐼𝑛𝑡𝑟𝑎𝑇𝑍𝑘
 

represent the intra-zonal traffic in model zone k, and 𝐼𝑛𝑡𝑒𝑟𝑇𝑍𝑘
 represent the inter-zonal traffic into and out 

of zone k: 

𝐼𝑛𝑡𝑟𝑎𝑇𝑍𝑘
 = ∑ ∑ 𝑡𝑖𝑗

𝑗∈𝑍𝑘𝑖∈𝑍𝑘

 (17) 

𝐼𝑛𝑡𝑒𝑟𝑇𝑍𝑘
=  ∑ ∑ (𝑡𝑖𝑗 + 𝑡𝑗𝑖)

𝑗∉𝑍𝑘𝑖∈𝑍𝑘  

(18) 

Our goal is to limit the ratio between intra-zonal trips and the sum of intra- and inter-zonal trips to be less than 

or equal to a threshold 𝜃: 

𝐼𝑛𝑡𝑟𝑎𝑇𝑍𝑘

𝐼𝑛𝑡𝑟𝑎𝑇𝑍𝑘
+ 𝐼𝑛𝑡𝑒𝑟𝑇𝑍𝑘

< 𝜃
 

(19) 

The assumed value of 𝜃 is 0.1. When all model zones reach this intra-zonal to inter-zonal traffic limit 

but there are still some TAZs unassigned, θ is automatically increased by 0.05. This operation is repeated until 

all TAZs are assigned. To calculate variables 𝐼𝑛𝑡𝑟𝑎𝑇𝑍𝑘
 and 𝐼𝑛𝑡𝑒𝑟𝑇𝑍𝑘

, a TAZ-by-TAZ origin-destination 

matrix containing the number of trips between each pair of TAZs was obtained from the Southern California 

Association of Governments.  

6. Experiments 

The above section discussed the computational issues of implementing the regionalization process. In the next 

section, we describe several experiments to explore variations of these methods and assess their effectiveness 

in solving this applied p-compact-regions problem.  

6.1 Impact of Randomization 

Randomization is introduced in the model-zone construction phase to generate a larger solution space by 

randomly selecting one plan from the top N best plans for growing a model zone. In this section we investigate 

appropriate settings for this randomization strategy. Figure 6(a) demonstrates the growth of a region from a 

seed TAZ in L.A. County (highlighted in blue) using non-randomization (left) and randomization (right; N=5) 
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approaches. Both model zones start to grow from the same seed TAZ, and stops when the intra-zonal traffic 

reaches the threshold (10% of the total traffic). It can be said that both strategies lead to relatively compact 

regions, however, the regions grew in different directions: one grew towards the northeast of the seeded TAZ 

and the other grew almost evenly around the seed TAZ. Figures 6(b)-(d) demonstrate the distribution of the 

objective (the compactness of a region using the NMI approach) over 200 runs when N=7, 5, and 3 respectively. 

The red vertical line in the figures represents the achieved objective value 0.978 when the non-randomization 

approach is applied. It can be seen clearly that by using randomization, the majority of the 200 results (over 

50%) are better than when non-randomization is used. In addition, using the non-randomization approach, the 

region will always grow in the same direction and shape as the left figure in Figure 6(a). For a randomization 

approach, a region could possibly grow in any direction and the right figure in Figure 6(a) shows just one of 

many possibilities. This increases the flexibility of region generation and is especially helpful when multiple 

regions are growing simultaneously. Therefore, adopting randomization in the region-construction process 

certainly performs better than when it is not used.  

We also examined the optimal setting of N in this randomization strategy. The stopping criterion for 

a run is the same as that set in the experiment shown in Figure 6(a). We set the length of the best moving plans 

N to be 3, 5 and 7 in the experiments, and the results show that when N=3, over 75% of the simulations lead 

to plans better than 0.978, while when N=5 or N=7, the ratios are only 63% and 56%. Therefore, N = 3 is the 

best setting of N and is used in the solution framework algorithm.  

 

(a)  
 

(b) 
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Figure 6. Distribution of overall objective function values of a test model zone in LA County over 200 runs.  

 

6.2 Performance comparison of meta-heuristics at the local-search phase 

The meta-heuristic modules integrated in our solution framework, including GRASP, TABU, and MERGE, 

were each run 500 times over 500 feasible solutions generated from the randomized region-construction phase 

to identify the best solution. The Y axis shows the overall objective value, which is the sum of the compactness 

index (using NMI) over 100 model zones. As the range of NMI for a single region is (0,1], the range of 

objective values equaling the sum of NMI over 100 zones is (0,100]. The X axis shows the Nth run of a meta-

heuristic. A trend line using a moving average is also shown. The red dots/line show the objective value of 

80.5 that can be achieved using the non-randomized greedy algorithm. Clearly, better solutions can be obtained 

when adopting randomization and meta-heuristics including GRASP, TABU, and MERGE. Among these 

meta-heuristics, MERGE is demonstrated to be the best by producing zones with an average compactness 

value of 0.89 while satisfying all other constraints.  

 

 

 

 
(c) 

  

 
(d) 
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Figure 7. Performance comparison in achieving optimality using metaheuristics. "4 per. Mov. Avg" means 

the trend line generated by taking the arithmetic mean of subsequences of four data points. 

6.3 Comparison of region compactness using NMI and IPQ measures 

The best solutions from the 500 runs and the zonation plans using IPQ and NMI as compactness measures are 

shown in Figure 8 and Figure 9. Intuitively, the model zones produced by the proposed compactness measure 

NMI are much rounder in shape and insensitive to the detailed form of the edge. The average NMI 

compactness of model zones constructed using IPQ is 0.711, which is 0.18 less than for zones constructed 

using NMI. Figure 10 counts the number of regions out of 100 with shape indices falling in each bin. We can 

see that for the regions generated by the NMI approach, about 70% achieved a compactness of 0.9. However, 

for those generated by the IPQ approach, only less than 20% had a compactness equal to or greater than 0.9. 

This experiment verified that the NMI approach substantially outperforms the IPQ approach in a 

regionalization problem aiming at generating compact regions. This is because, in principle, the IPQ method 

suffers from the well-known bias introduced by estimating the lengths of real geographic curves from the 

lengths of their polyline representations (Longley et al. 2010), as opposed to the NMI, which is directly related 

to the average accessibility of the entire area, rather than the geometry of its perimeter. The contrast between 
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the two measures is most obvious when a roughly circular area that in fact has a long, undulating perimeter 

several times as long as the perimeter of a circle is compared to a long, thin area. The IPQ will return similar 

values in these two cases, whereas the NMI will be very different, indicating the marked difference in 

accessibility and circularity of the two cases. Therefore, the NMI approach was adopted in our solution 

framework for this p-compact-regions problem applied to the Southern California Association of Governments 

area.  

 

 

Figure 8. Zoning result using IPQ as the compactness measure 
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Figure 9. Zoning result using NMI as the compactness measure 

  

Figure 10. Comparison of compactness distribution of the 100 generated model zones in Figure 8 

and Figure 9 

7. Discussion and Conclusions 
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This paper presents a real-world p-compact-regions problem and proposes an extendable heuristic 

framework to solve it to near-optimality. This TAZ zonation problem is substantially different from those 

described in the literature both conceptually and computationally, because of the large number of building 

blocks and zones, the complexity of the objective function and constraints, and the innovative approach to 

compactness. We introduced the model and the computational issues for both the objective and constraints, 

the design and implementation of the solution framework, and the impact of a number of techniques, 

including various meta-heuristics, compactness measures, and the quality of the results based upon the 

degree to which a randomization strategy was used. Through a series of experiments, we concluded that 

when the number N of candidate building blocks maintained during the region construction phase is equal to 

3, using MERGE for local search and NMI as the compactness measure yields the best solution in 

comparison with other techniques.   

The RELU-TRAN project is still under development, this generation of model zones being one of 

the first stages in a multi-year project. At this time the modelers in the research team are quite satisfied with 

the model zones, finding upon detailed inspection that they satisfy all of the requirements both in principle, in 

terms of the objectives and constraints, and in practice in terms of the detailed positioning of zone boundaries. 

The project will now proceed to the next steps of model calibration and application.  

In summary, our purpose in this paper was to explore various aspects of the p-compact-regions 

problem, using a real, practical example of substantial size. We make an original contribution in the use of 

NMI as a compactness measure in a p-compact-regions problem and prove its better performance over the 

commonly used IPQ approach. As the NMI approach is additive, robust towards positioning errors, and is able 

to handle regions with holes or multi-parts, it can well handle the non-continuous study area, such as those 

with a lake removed or having islands in the regionalization process. This is a great advantage in using NMI 

over other compactness measures. This paper also makes a substantial contribution in providing a highly 

extendable solution framework that allows other researchers to investigate a large, real, non-linear 

regionalization problem and find practical solutions. We believe that the experience we have gained in this 

project, and the solutions we have found to many of its issues, may provide useful guidance to others.  

Though generally applicable, we believe that any implementation of the p-compact-regions problem 

must respond to its specific circumstances, as applications will vary in the number and nature of constraints, 
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the number and nature of other objectives, the computational issues raised by the size of the problem, and the 

geography of the application area. For example, when applying the proposed solution framework to other 

applications or similar application with larger size, the randomization parameter N needs to be carefully tuned 

for a proper sampling of solutions in the solution space. Although the optimization model we formulated here 

is single-objective tailored to the specific need of the urban economic modeling problem, it will be highly 

extendable to integrate more objectives. Preliminary experiments have been conducted in using an objective 

which minimizes intra-zonal dissimilarity instead of maximizing  compactness in our solution framework. The 

results demonstrated that the proposed solution framework is able to solve the problem with much less time 

and can still achieve the same level of solution quality in comparison to a commercial solver CPLEX. In the 

future, we will conduct a systematic testing on a multi-objective regionalization problem and propose a more 

comprehensive solution framework for broader applications. We are also working on integrating the p-

compact-regions code with the open-source spatial analysis library PySAL (http://pysal.org) to make it openly 

available to peers in the GIS community. 

http://pysal.org/
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