Metropolis and Silvester

A comparison

The issue

Evaluating congestion pricing proposals

- * Costs & benefits
- * Compare equilibria
 - * Ideally dynamic ones
- * Needed: (dynamic) (equilibrium) models
- Opportunity in Stockholm
 - Implementation of dynamic pricing in 2007
 - * Two models: Silvester & Metropolis
- Very interesting, and important

Rough comparison

Silvester

- * P, T, SDE, SDL, Sigma
- t^{*} for departures
- Discrete time
- Mixed Logit
- * One shot equilibrium?
- Heterogeneous VoT within trip purpose

Metropolis

- * P, T, SDE, SDL
- t^{*} for arrivals
- Continuous time
- Nested Logit but Continuous Logit for departure time
- Learning over days
- Homogeneous VoT within trip purpose

Differences in results

Silvester

- * Stronger modal shift
- Overestimates flow change
- * Lower toll revenues
- * Larger CS effect from tolling

Metropolis

- Less strong
- Underestimates flow change
- Higher toll revenues
- Smaller CS effect from tolling

Why could one expect higher CS effect?

In Silvester

- Heterogeneous VoT's
- Q1 Also Heterogeneous VSD's? Would increase effect (better order of travellers)?
- Q2 Variability of travel time: does tolling reduce it in the model?
- Q3 What does Mixed Logit, compared to Nested, do to elasticities?

In Metropolis

- Continuous time
 - * Q4 Can be exploited fully with time-varying tolling. Analyzed?
 - Q5 Shadow price of public fund? What value would tip the balance?

* Q6 This compares exogenous tolls. What can we expect for optimized tolls?