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ABSTRACT 

Cruising-for-parking is a critical mobility issue in urban cities. The cost and accessibility of 

parking significantly influence people’s travel behavior (such as mode choice) and facility 

choice (on-street or garage parking). Car-users may have to cruise for on-street parking space 

before reaching destinations and cause delays eventually to everyone, even users with 

destinations outside limited parking areas. It is therefore important to understand the impact of 

parking limitation on mobility and identify efficient parking policies. However, most existing 

studies on parking either fall short in reproducing the dynamic spatiotemporal features of traffic 

congestion in general and the cruising-for-parking phenomenon, or require detailed input data 

that are costly and difficult to collect. In this paper, we propose an aggregated dynamic model 

for multimodal mobility with the consideration of parking, and utilize the model to 

evaluate management policies, such as parking pricing. The proposed approach is based on the 

recent development of the low-scattered Macroscopic Fundamental Diagram (MFD), where the 

MFD can capture congestion dynamics at network-level for single-mode and bi-modal (car and 

bus) systems. A parsimonious parking model is integrated into the MFD-based multimodal 

modeling framework, where the dynamics of vehicle and bus flows are considered with a 

change in the aggregated behavior (e.g. mode choice and parking facility choice) caused by 

parking cruising and congestion. Pricing strategies of parking are then developed with the 

objective of reducing congestion, as well as the total travel cost. An example on a bi-modal city 

investigates the traffic performance under various types of parking policies and pricing schemes 

of different parking facilities, e.g. on-street parking and garage parking.    

 

INTRODUCTION 

Cruising-for-parking can significantly influence mobility in congested urban networks. The cost 

and accessibility of parking significantly impact people’s travel behavior, such as mode choice 

and facility choice (on-street or garage parking). Furthermore, parking affects traffic 

performance. Car-users may have to cruise for on-street parking space before reaching 

destinations and cause delays eventually to everyone, even users with destinations outside 

limited parking areas. Therefore, it is crucial to understand the impact of parking on mobility 

and identify traffic management policies to avoid the negative externalities.  

Consider a system where travelling by car and searching for an on-street parking is the only 

available mode of transport (see for example Arnott and Rorwse (2009), Arnott and Inci (2010), 

Geroliminis (2014)). In this case under high demand the system has a stable equilibrium, which 

is close to gridlock. Parking will always be full and whenever there is a free spot, this will be 

occupied immediately by the cruising vehicles as very well stated in Arnott and Inci (2010) and 

also showed in Geroliminis (2014). If passengers have efficient alternative choices (e.g. change 
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of departure time, utilizing a parking garage, switch to public transport) and some of these 

choices might be properly priced, then the system might end up in non-gridlock states.  This 

paper investigates the traffic dynamics of a system with limited on-street parking, unlimited but 

priced garage parking and a public transport alternative. It develops a feedback-based pricing 

scheme that does not require prediction of the state of the system and shows that hyper-

congestion and cruising can be avoided. It also investigates how close such a traffic 

management strategy can get to the system optimum pricing with perfect information of the 

future conditions of the system. While detailed micro- or agent-based simulations could provide 

a scenario analysis of such a system, we follow a “dynamic aggregated approach” consistent 

with the physics of traffic congestion that can contribute to develop some strong physical 

intuition for such a challenging problem. Time of departure is not considered, as it will make 

the solution approach too hard for analytical derivations. 

Extensive studies have been dedicated to address how parking and parking policies influence 

people’s mode choice and travel delay. Representative works can be found in Arnott and 

Rorwse (1999), Anderson and de Palma (2004) (2007), Arnott (2006), Forsgerau and de Palma 

(2013), Qian et al. (2013) and elsewhere. Most of these works are based on the classical 

bottleneck-model, which was developed by Vickrey (1969), and make important extensions of 

the model by considering parking constraints to reveal behavioral changes under parking 

limitation and parking-related policies. However, few studies discuss the dynamic influence of 

parking on traffic flow. In case of insufficient parking capacity, for instance, cruise-for-parking 

flows should be treated differently than the normal running flows. Existing analysis on this 

subject include for instance, Arnott and Rorwse (2009) and Arnott et al. (2013), which took the 

impact of cruising into account when analyzing parking pricing policies; Martens et al. (2010) 

examined spatial effect on searching for parking; while Horni et al. (2013) incorporated parking 

choice and searching-for-parking in an agent-based model with simplistic traffic modeling. 

However, these studies assumed static traffic states and did not deal with the dynamics of traffic 

(e.g. how traffic density changes over time) that can be significantly different in the presence of 

parking limitations. The treatment of the physics of cruising-for-parking and how cruising can 

lead to congestion remain challenging research subjects.  

Recent studies indeed moved toward this direction. For example, Gallo et al. (2011) 

incorporated parking costs in their traffic assignment model; van Ommeren et al. (2012) carried 

out an empirical study on the diverse features of cruising time in the Netherlands; while Guo 

and Gao (2012) developed a model to estimate travel time including the delay from searching 

for on-street parking space. The issue is that the utilized approach may either require data that 

are difficult to collect (e.g. detailed information of origin-destination and parking availability at 

destination) or become computationally expensive in large-scale applications (e.g. microscopic 

traffic or agent-based models). Several works analyzed delay caused by on-street curb parking 

at intersection level, see for example Yousif and Purnawan (2004) and Cao et al. (2014). 

Nevertheless, these models cannot be readily applied on large-scale networks. Latest findings 

on the low-scattered Macroscopic Fundamental Diagram (MFD) provide a promising tool for 

modeling the complex dynamics of transport system at network-level. Geroliminis (2014) 

proposes a macroscopic parking model, which is built into an MFD framework to capture the 

influence of parking on congestion. This work shows that the MFD-based model not only 

reflects the dynamics of parking flows in an urban network, but also requires data that can be 

practically obtained. Moreover, this work reveals that if cruising-for-parking is intense, demand 

which is lower than the network capacity can create significant congestion due to higher trip 

lengths. It proposes simple types of traffic management that alleviate the phenomenon, and 

shows that perimeter control (restricting the inflow to specific areas by altering traffic signal 

settings) can significantly reduce delay if cruising-for parking is not so intense and many trips 
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are not originated from the inner zone; otherwise applying congestion and parking pricing are 

more efficient. What is still missing though is a modelling approach, which can be integrated in 

multi-modal multi-region systems. Furthermore, the impact of parking limitation and parking 

management strategies on multimodal mobility deserves further research effort. Although mode 

choice was indeed studied by taking into account the influence of parking availability and cost, 

see for example in Li et al. (2007), Zhou et al. (2008) and Liu et al. (2009), the utilized 

approaches again fall short in the dynamic treatment of cruising and congestion.      

This work aims to fill in the aforementioned research gaps. The objective is to develop an 

aggregated macroscopic approach for modeling multimodal system with parking limitation. 

This approach shall enable the development and optimization of parking pricing strategies for 

improving multimodal mobility. A recent study by the authors presents a macroscopic approach 

to model the dynamics of a bi-modal (cars and buses) transport system (Zheng and Geroliminis, 

2013) without any parking treatment. The work shows that effective management strategies 

such as allocation of dedicated-bus-lanes and area-based pricing can be developed by utilizing a 

low-scattered bi-modal MFD. A parking module will be integrated into this bi-modal modeling 

framework to capture the dynamic of cruising-for-parking and estimate cruising delay. The bi-

modal traffic model that is utilized to reproduce the movement of traffic flows will be extended 

by specific treatment on the car flow families: moving, cruising-for-parking and parked.   

The remaining part of the paper is organized as follows. Section II presents the methodology for 

modeling multimodal traffic system dynamics with parking, building on the work of 

Geroliminis (2014). Four subsections will be given on the underlying traffic model, parking 

model, system model and mode choice model, respectively. Two parking pricing strategies are 

developed in Section III, with the objective to reduce general congestion and the total travel cost. 

While Section IV discusses the results of a case study, where the rationale of the modeling 

approach is shown and system performances under different parking pricing strategies are 

evaluated. Concluding remarks are given in Section IV.  

METHODOLOGY 

In this section, we present the macroscopic approach for modeling multimodal traffic dynamics 

with limited parking. For readability, we provide a nomenclature in Table 1 for the main 

variables and parameters utilized in the paper.  

Table 1 List of main variables and parameters 

Variables Description 

𝑃𝑖
𝑚(𝑡) Total distance traveled (production) in region 𝑖 by mode 𝑚 at time interval 𝑡   

𝑁𝑖
𝑚(𝑡) The accumulation of mode 𝑚 currently in region 𝑖 at time 𝑡 

𝐺𝑖
𝑚(𝑁𝑖

𝑚(𝑡)) The production MFD for  mode 𝑚 in region 𝑖 , in function of the 

accumulation 𝑁𝑖
𝑚 at time 𝑡 

𝑄𝑖→𝑗
𝑘𝑚 (𝑡)  Demand generated using mode 𝑚 in region 𝑖 approaching to the neighbor 

region 𝑗 at time 𝑡 with final destination regions 𝑘 

𝑂𝑖→𝑗
𝑘𝑚 (𝑡) Trip completion/transfer flow of mode 𝑚 from region 𝑖 approaching to the 

bounded neighbor regions 𝑗 with final destination regions 𝑘 at time 𝑡 

𝑂𝑖
𝑚(𝑡) Vehicle outflow of mode 𝑚 exiting region 𝑖 at time 𝑡  

𝐼𝑖
𝑚(𝑡) Incoming flow of mode 𝑚 from external regions to region 𝑖 at time 𝑡 

𝑁𝑃𝑖
𝑚(𝑡) Passenger accumulation on mode 𝑚 currently in region 𝑖 at time 𝑡 
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𝑂𝑃𝑖
𝑚(𝑡) Passenger outflow on mode 𝑚 exiting region 𝑖 at time 𝑡 

𝑁𝑥,𝑖(𝑡) Accumulation of car family 𝑥 in region 𝑖 at time 𝑡 (𝒙 = 𝑟, 𝑠, 𝑜, 𝑔, 𝑜𝑠) 

𝑂𝑥,𝑖(𝑡) Outflow flow of car family x in region 𝑖 at time 𝑡 

𝜔𝑜𝑠,𝑖
𝑐 (𝑡)|𝜔𝑔,𝑖

𝑐 (𝑡) Fraction of trip-finishing cars for on-street (or garage parking) in region 𝑖 at 

time 𝑡 

𝜔𝑖
𝑚(𝑡) Fraction of passengers travelling with mode 𝑚 in region 𝑖 at time 𝑡 

𝑂𝑟→𝑠,𝑖(𝑡)|𝑂𝑟→𝑔,𝑖(𝑡) The transfer flow from the running family to searching family or to garage 

parking in region 𝑖 at time  

𝑙𝑥,𝑖 The average trip distance of car family 𝑥 travelled in region 𝑖 

𝑜𝑐𝑐𝑖
𝑚(𝑡) The average occupancy of mode 𝑚 in region 𝑖 at time 𝑡 

𝑁𝑜𝑠,𝑖(𝑡) The occupied on-street parking spaces at time 𝑡 of region 𝑖 

𝐴𝑖  The total amount of on-street parking spaces of region 𝑖 

𝜑𝑖(𝑡) The probably of finding an available on-street parking space at 𝑡 in 𝑖  

 𝐿𝑖(𝑡) The average cruising distance before finding an available on-street parking 

space at time 𝑡 in region 𝑖 

𝑇𝑐𝑟𝑢,𝑖(𝑡) The average cruising delay at time 𝑡 in a region 𝑖 

𝑝𝑜𝑠(𝑡)| 𝑝𝑔(𝑡) Pricing rates for on-street parking (or garage parking) at time 𝑡  

  

Multimodal macroscopic traffic model  

Recent findings on the Macroscopic Fundamental Diagram (MFD) significantly advance 

network level modelling of urban congestion. The idea of macroscopic traffic model for car-

only urban networks was initially proposed by Godfrey (1969). The existence of the MFD with 

dynamic features and from field data was firstly reported in Geroliminis and Daganzo (2008), 

showing that urban single-mode regions exhibit an MFD relating network production to 

network density. An interested reader could refer to Mahmassani et al. (2013) and Leclercq et al. 

(2014) for a review of recent development on MFD-related theories. Latest works extend the 

MFD from single-mode application to bi-modal, where cars and buses share the same 

infrastructure (Zheng and Geroliminis (2013), Geroliminis et al. (2014)). The existence of a 

mixed-traffic MFD and a three-dimensional MFD (3D-MFD) are investigated in these works 

via micro-simulation studies. Remarkably, the MFDs relate the accumulation of cars and buses 

to passenger flows representing congestion dynamics under different mode compositions.  

We utilize in this work both the single-mode and the multimodal MFD (cars and buses) as the 

traffic model, relating the total distance travelled in region 𝑖 of mode 𝑚 (𝑚 can be any vehicular 

mode that either utilizing dedicated road space or sharing space with other modes) at time 𝑡, the 

production 𝑃𝑖
𝑚(𝑡), to vehicle accumulation 𝑁𝑖

𝑚(𝑡). Mathematically, it is written as follows, for 

single-mode traffic (e.g. dedicated lanes separating cars and buses) and mixed traffic:            

𝑃𝑖
𝑚(𝑡) = 𝐺𝑖

𝑚(𝑁𝑖
𝑚(𝑡)) (1) 



* Alternatively one may apply a two-dimension cruising model, provided with detailed data on spatial 

distribution of parking spaces and the cruising behavior of cars.  
  

𝐺𝑖
𝑚is the MFD function which can be obtained via analytical approximations (Geroliminis and 

Boyaci (2012), Leclercq and Geroliminis (2013)). Based on well-established traffic flow 

concepts, it is straightforward to estimate trip completion rate, the outflow of a network 𝑂𝑖
𝑚(𝑡), 

and the average speed 𝑣𝑖
𝑚(𝑡)  from the production by: 𝑂𝑖

𝑚(𝑡) = 𝑃𝑖
𝑚(𝑡)/𝑙𝑖

𝑚  where 𝑙𝑖
𝑚  is the 

average trip distance, and 𝑣𝑖
𝑚(𝑡) = 𝑃𝑖

𝑚(𝑡)/𝑁𝑖
𝑚(𝑡). 

Parking model 

Consider a network that has two typical parking facilities: on-street parking and garage parking. 

The on-street parking has total parking space 𝐴𝑖 and the occupied parking space at time 𝑡 is 

𝑁𝑜𝑠,𝑖(𝑡). The available parking space thus is 𝐴𝑖 − 𝑁𝑜𝑠,𝑖(𝑡) ≥ 0, while the garage parking is 

assumed to have infinite capacity without cruising delay. To reflect the impact of parking 

limitation on traffic, a parking model must be introduced. A bi-modal MFD model with 

unlimited parking such as the one in Zheng and Geroliminis (2013) considers two families of 

car movements: (I) cars moving towards internal destination, and (II) towards external 

destinations. We now extend the treatment to three families: (I) cars running towards internal 

destination but not yet search for parking 𝑁𝑟,𝑖(𝑡), (II) cars reaching destination and searching 

for on-street parking space  and (III) cars moving towards external destination regions 𝑁𝑜,𝑖(𝑡). 

Cars reaching destination and successfully parked are denoted by 𝑁𝑜𝑠,𝑖(𝑡) and 𝑁𝑔,𝑖(𝑡)  for on-

street parking and garage parking, respectively. The interactions among the different families 

will be illustrated later. For simplicity, mode index 𝑐 (for cars) is skipped in these family 

notations.   

For family II, the cruising-for-parking process is considered to be repetitive Bernoulli trials, 

until an available parking spot is obtained, which is expressed by a geometric distribution 

(number of trials until the first success). The probability 𝜑𝑖(𝑡) that a parking spot is available 

when being reached, is in direction proportion to the ratio between the available space 𝐴𝑖 −
𝑁𝑜𝑠,𝑖(𝑡) and the total parking space 𝐴𝑖 (in this work we consider only one region with parking 

difficulties, but this can be easily extended to multiple regions) * 

We assume the parking spaces evenly distributed around the destinations, with a spacing 𝑠𝑖. 
Alternatively one may apply a two-dimension cruising model, provided with detailed data on 

spatial distribution of parking spaces and the cruising behavior of cars.  

Given the geometric distribution, the mean number of parking spaces passed by cars in family II 

before finding an available parking space is 1/𝜑𝑖(𝑡). The average cruising distance 𝐿𝑖(𝑡) thus 

can be obtained by Equation (3), while a similar model with similar formulation exists in 

Geroliminis (2014):  

Given the speed 𝑣𝑖
𝑐(𝑡) from the MFD, the cruising delay 𝑇𝑐𝑟𝑢,𝑖(𝑡) can be obtained as:  

Regarding the pricing of using the facilities, denote 𝑝𝑜𝑠(𝑡) and 𝑝𝑔(𝑡) for on-street parking rate 

and garage parking rate at time 𝑡 . Cruising inside garages is neglected in this study. 

𝜑𝑖(𝑡) =
𝐴𝑖 − 𝑁𝑜𝑠,𝑖(𝑡)

𝐴𝑖
 (2) 

𝐿𝑖(𝑡) = 𝑠𝑖 ∙
1

𝜑𝑖(𝑡)
      (3) 

𝑇𝑐𝑟𝑢,𝑖(𝑡) =
𝐿𝑖(𝑡)

𝑣𝑖
𝑐(𝑡)

=
𝑠𝑖

𝜑𝑖
(𝑡) ∙ 𝑣𝑖

𝑐(𝑡)
       (4) 

ngeroliminis
Sticky Note
under steady state conditions, we can approximate the trip completion rate,....

Have a separate sentence for speed. Space mean Speed vi is by definition  = Pi....
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Similar aggregated models treating parking limitation can be found in Geroliminis (2014), 

where a parking model built into an MFD modeling framework was proposed and perimeter 

flow control strategy was developed to reduce both parking cost and total cost for travelers, for 

single-mode systems; and in Arnott and Inci (2010), where equilibrium conditions under 

parking constraint (space, duration) are derived for a single-region single-mode and single-

parking-facility system under steady-states.  

System dynamics with MFD representation and parking   

To apply our model, a large-scale city network shall be firstly clustered into regions. The 

criteria for clustering are: (i) homogeneous distribution of congestion within each region to 

obtain a low scatter MFD (see Ji and Geroliminis (2012) for more details) and (ii) similar type 

of mode usage. Given the regional accumulation 𝑁𝑖
𝑚(𝑡) , the regional MFD 𝐺𝑖

𝑚 estimates 

production 𝑃𝑖
𝑚(𝑡) and outflow 𝑂𝑖

𝑚(𝑡) of vehicles, and of persons 𝑂𝑃𝑖
𝑚(𝑡) = 𝑂𝑖

𝑚(𝑡) ∙ 𝑜𝑐𝑐𝑖
𝑚(𝑡) 

provided the average passenger occupancy of mode 𝑚, 𝑜𝑐𝑐𝑖
𝑚(𝑡). Given the traffic demand of 

mode choice 𝑚, 𝑄𝑖
𝑚(𝑡), the dynamics of each partitioned region 𝑖 of this bi-modal system can 

be described by the change of 𝑁𝑖
𝑚(𝑡) for vehicle flow, and the change of 𝑁𝑃𝑖

𝑚(𝑡) for person 

flow. A discrete version of the dynamics can be found as follows:  

In the equations, demand 𝑄𝑖
𝑚(𝑡)=∑ ∑ 𝑄𝑖→𝑗

𝑘𝑚 (𝑡)𝑗𝑘≠𝑖 , where 𝑄𝑖→𝑗
𝑘𝑚  is the demand generated in 

region 𝑖 approaching to the neighbor regions 𝑗 with final destinations 𝑘. The regional outflow 

𝑂𝑖
𝑚(𝑡) = ∑ ∑ 𝑂𝑖→𝑗

𝑘𝑚 (𝑡)𝑗𝑘≠𝑖 , is constrained by the receiving capacity of the approaching regions 

𝑗 and the boundary capacity between 𝑖 and 𝑗. Variable 𝐼𝑖
𝑚 denotes the total incoming vehicle 

flow from the neighbor regions, 𝐼𝑖
𝑚(𝑡) = ∑ ∑ 𝑂𝑗→𝑖

𝑘𝑚(𝑡)𝑗≠𝑖𝑘 , while 𝐼𝑃𝑖
𝑚(𝑡) is the incoming flow 

in person units. Note that (i) for route choice between an origin-destination pair, a regional 

route choice model can be applied to determine the sequence of the passing regions 

(Yildirimoglu and Geroliminis, 2014), and (ii) for details on the distributions of flows over 

the different regional ODs, for example 𝑁𝑖→𝑗
𝑘𝑚  over 𝑁𝑖

𝑚 , readers can refer to Zheng and 

Geroliminis (2013).  

To estimate the cruising time for cars, it is indispensable to decompose 𝑁𝑖
𝑐(𝑡) in Equation (5) 

into the three movement families that were introduced in the previous subsection: 𝑁𝑖
𝑐(𝑡) =

𝑁𝑟,𝑖(𝑡) + 𝑁𝑠,𝑖(𝑡) + 𝑁𝑜,𝑖(𝑡). Buses are assumed to have one family of vehicles with external 

destinations and no generated “demand”, as buses operate usually circular routes across the 

regions with small time-varying service frequencies. Equations (5) and (6) without the demand 

terms 𝑄 are sufficient for describing the dynamics of buses. Figure 1 displays flow movements 

of buses and cars with parking choices in region 𝑖, with all state variables included. 

𝑁𝑖
𝑚(𝑡 + 1) = 𝑁𝑖

𝑚(𝑡) +
𝑄𝑖

𝑚(𝑡)

𝑜𝑐𝑐𝑖
𝑚(𝑡) 

+ 𝐼𝑖
𝑚(𝑡)  − 𝑂𝑖

𝑚(𝑡) 

 

(5) 

𝑁𝑃𝑖
𝑚(𝑡 + 1) = 𝑁𝑃𝑖

𝑚(𝑡) + 𝑄𝑖
𝑚(𝑡) + 𝐼𝑃𝑖

𝑚(𝑡) − 𝑂𝑃𝑖
𝑚(𝑡) (6) 
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Figure 1 Flow movements in region network 𝒊 with parking choices 

Assume 𝑜𝑐𝑐𝑖
𝑐(𝑡) = 1 and constant, the flow conservation of the families I, II, III, and the two 

families of the parked cars can be written as follows and illustrated by Figure 1: 

 

In Equation(7a), 𝑄𝑖
𝑖𝑐(𝑡) is the internal demand from region 𝑖 to 𝑖; 𝐼𝑖

𝑖𝑐 is the total incoming flow 

from external regions to region 𝑖 and ending their trips in region 𝑖, where 𝐼𝑖
𝑖𝑐 = ∑ 𝑂𝑗→𝑖

𝑖𝑐 (𝑡)𝑗≠𝑖 . In 

Equation (7b), 𝑂𝑟→𝑠,𝑖(𝑡) is the transfer flow from running (family I) to searching-for-parking 

(family II),  𝑂𝑟→𝑠,𝑖(𝑡) = 𝑂𝑟,𝑖(𝑡) ∙ 𝜔𝑜𝑠,𝑖
𝑐 (𝑡) and 𝜔𝑜𝑠,𝑖

𝑐 (𝑡) denotes the percentage of trip-finishing 

cars that pursuing on-street parking. The term 𝑄𝒊
𝑘𝑐(𝑡) = ∑ ∑ 𝑄𝑖→𝑗

𝑘𝑚 (𝑡)𝑗≠𝑖𝑘≠𝑖  in Equation (7c) 

denotes the total demand generated in region 𝑖  with external destinations 𝑘 ; 𝐼𝒊
𝒌𝒄(𝑡) =

∑ ∑ 𝑂𝑗→𝑖
𝑘𝑚(𝑡)𝑗≠𝑖𝑘≠𝑖  is the total through transfer flow; while the last term 

𝑂𝑜,𝑖(𝑡) = ∑ ∑ 𝑂𝑖→𝑗
𝑘𝑚 (𝑡)𝑗≠𝑖𝑘≠𝑖  is the total outflow exiting region 𝑖 . Equations (7d) and (7e) 

describe the dynamics of the parking flows, where 𝑄𝑖,𝑜𝑠
𝑐 (𝑡)  and 𝑄𝑖,𝑔

𝑐 (𝑡)  are the demand 

generated from on-street parking and garage parking, 𝑄𝑖,𝑜𝑠
𝑐 (𝑡) + 𝑄𝑖,𝑔

𝑐 (𝑡) = 𝑄𝑖
𝑖𝑐(𝑡) + 𝑄𝑖

𝑘𝑐(𝑡).  

𝑁𝑟,𝑖(𝑡 + 1) = 𝑁𝑟,𝑖(𝑡) + 𝑄𝒊
𝑖𝑐(𝑡) + 𝐼𝒊

𝒊𝒄(𝑡) − 𝑂𝑟,𝑖(𝑡) 

𝑁𝑠,𝑖(𝑡 + 1)  = 𝑁𝑠,𝑖(𝑡) + 𝑂𝑟→𝑠,𝑖(𝑡) − 𝑂𝑠,𝑖(𝑡) 

𝑁𝑜,𝑖(𝑡 + 1) = 𝑁𝑜,𝑖(𝑡) + 𝑄𝒊
𝑘𝑐(𝑡) + 𝐼𝒊

𝒌𝒄(𝑡) − 𝑂𝑜,𝑖(𝑡) 

𝑁𝑜𝑠,𝑖(𝑡 + 1) = 𝑁𝑜𝑠,𝑖(𝑡) − 𝑄𝑖,𝑜𝑠
𝑐 (𝑡) + 𝑂𝑠,𝑖(𝑡) 

𝑁𝑔,𝑖(𝑡 + 1) = 𝑁𝑔,𝑖(𝑡) − 𝑄𝑖,𝑔
𝑐 (𝑡) + 𝑂𝑟→𝑔,𝑖(𝑡) 

  (7a) 

(7b) 

(7c) 

(7d) 

(7e) 
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The family-specific outflow 𝑂𝑥,𝑖(𝑡), 𝑥 ∈ {𝑚, 𝑔, 𝑠, 𝑜} can be obtained by Little’s formula:  

Where 𝑁𝑖
𝑐(𝑡) = ∑ 𝑁𝑥,𝑖(𝑡)𝑥 , and  𝑃𝑖

𝑐(𝑡) = 𝑃𝑖
𝑐(𝑁𝑖

𝑐(𝑡)) is estimated by (1). 𝑙𝑥,𝑖 is the average trip 

distance of family 𝑥 travelled in region 𝑖, where 𝑙𝑚,𝑖 = 𝑙𝑔,𝑖 = 𝑙𝑜,𝑖 = 𝑙𝑐 and 𝑙𝑐 is network specific 

and given. 𝑙𝑠,𝑖 = 𝐿𝑖(𝑡) is estimated by Equation (3).  

Aggregated mode choice  

To determine the mode split of the newly-generated demand (between car and bus) a Nested-

Logit model is applied based on the latest known trip disutility (costs) 𝐶𝑖
𝑐,𝑛(𝑡) for travelling 

with cars with parking facility choice 𝑛 = {on street vs. garage}, and 𝐶𝑖
𝑏(𝑡) for traveling with 

buses. For cars, trip disutility includes travel time, cruising delay and the costs of parking. 

While for buses, trip cost consists of travel time, accessing time and the discomfort of on-board 

overcrowding (see detail in Zheng and Geroliminis (2014)). In our case, the nest is required by 

the parking facility choice 𝑛. Denote 𝜔𝑔,𝑖
𝑐 (𝑡), 𝜔𝑜𝑠,𝑖

𝑐 (𝑡),the percentage of mode choice of cars 

with garage or on-street parking, and 𝜔𝑖
𝑐(𝑡) and 𝜔𝑖

𝑏(𝑡), the percentage of mode choice of cars 

and buses. We assume the travelers choose their mode of transport, either cars or buses, in the 

beginning of their trips. The estimation of bus share 𝜔𝑖
𝑏(𝑡) is given in Equation (9) below  

, where 𝐶𝑖
𝑐(𝑡) =

1

𝛽
∙ ln ∑ exp𝑛 (𝛽 ∙ 𝐶𝑖

𝑐,𝑛(𝑡)). Scale parameters 𝛽, 𝜏𝑏, 𝜏𝑐are calibrated to avoid 

oscillation in mode shift. By definition 𝜔𝑖
𝑐(𝑡) = 1 − 𝜔𝑖

𝑏(𝑡). Given the total demand 𝑄𝑖(𝑡), 

𝑄𝑖
𝑚(𝑡) can be estimated by 𝜔𝑖

𝑐(𝑡) and 𝜔𝑖
𝑏(𝑡). Given the car demand generation 𝑄𝑖

𝑐(𝑡), 𝑄𝑖,𝑜𝑠
𝑐 (𝑡) 

and 𝑄𝑖,𝑔
𝑐 (𝑡)  in Equation 7 can be obtained, as we can assume a fixed ratio that demand 

generated from the parking facilities (meanwhile releasing the parking space) is given.   

Note that we assume the car-users have limited knowledge on the possible availability of the 

on-street parking by the time they arrive at the destination (when they start searching for 

parking space). Therefore the final choice on parking facility is determined on-site. The 

distribution of the arriving flow 𝑂𝑟,𝑖(𝑡) between the two parking facilities can be estimated 

trough a normal Logit model by 𝜔𝑔,𝑖
𝑐 (𝑡) and 𝜔𝑜𝑠,𝑖

𝑐 (𝑡), where 𝜔𝑜𝑠,𝑖
𝑐 (𝑡) = exp (𝛽 ∙ 𝐶𝑖

𝑐,𝑜𝑠(𝑡)) /

(exp (𝛽 ∙ 𝐶𝑖
𝑐,𝑜𝑠(𝑡)) + exp (𝛽 ∙ 𝐶𝑖

𝑐,𝑔(𝑡))). The production of 𝑂𝑟,𝑖(𝑡) ∙ 𝜔𝑜𝑠,𝑖
𝑐 (𝑡) thus is the input 

to the cruising family 𝑁𝑠,𝑖(𝑡).  

PARKING PRICING STRATEGIES 

Studies have demonstrated that the MFD modeling can contribute to develop traffic 

management strategies, examples including congestion pricing (Zheng et al., 2012), space 

allocation for bus lanes (Zheng and Geroliminis, 2013), and dynamic traffic signal perimeter 

control (Haddad et al. (2013), Aboudolas and Geroliminis (2013)). We propose two dynamic 

pricing schemes (strategy P1 and P2) to determine on-street parking pricing 𝑝𝑜𝑠(𝑡) and garage 

pricing 𝑝𝑔(𝑡) such that the congestion of traffic and parking is reduced. Pricing is only applied 

𝑂𝑥,𝑖(𝑡) =
𝑁𝑥,𝑖(𝑡)

𝑁𝑖
𝑐(𝑡)

∙
𝑃𝑖

𝑐(𝑡)

𝑙𝑥,𝑖
      (8) 

𝜔𝑖
𝑏(𝑡) =

exp(𝜏𝑏 ∙ 𝐶𝑖
𝑏(𝑡))

exp(𝜏𝑐 ∙ 𝐶𝑖
𝑏(𝑡)) + exp(𝜏𝑐 ∙ 𝐶𝑖

𝑐(𝑡))
      (9) 

ngeroliminis
Sticky Note
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in the center region which experiences more congestion, i.e. a region index is omitted from the 

above pricing variables. Note that for the strategies under discussion, we assume to have full 

authority of both pricings whereas in reality they belong to parties with different operating 

objectives (and competition might occur). We will address this subject in the final part of the 

paper.  

Strategy P1 develops a generic widely used control loop feedback mechanism. It tries to 

succeed two set points, related to (i) the maximum production of the network (in terms of 

vehicle-kilometers travelled per time interval) and (ii) small cruising time for on-street 

parking. The strategy calculates an error value as the difference between a measured process 

variable and the desired set point. It attempts to minimize the error by adjusting the prices 

𝑝𝑜𝑠(𝑡) and 𝑝𝑔(𝑡).  
 

Strategy P2 considers that the dynamic evolution of the system is known and solves a single 

full horizon optimization problem to minimize the total costs experienced by all passengers. 

While such an approach can be considered to provide close to system optimum conditions, it 

is considered an ideal scenario, which is also difficult to implement. Nevertheless, it provides 

an upper limit for comparison purposes with more feasible strategies like P1 or time-

independent pricing.  

A congestion- and cruising-responsive feedback parking pricing scheme (Strategy P1) 

This pricing scheme should aim to reduce both traffic congestion caused by cars and by 

cruising. Car users will pay a parking fee based on the magnitude of congestion they cause at 

the moment they enter the network. A feedback-type controller is employed to update the time-

dependent prices 𝑝𝑜𝑠(𝑡)  and 𝑝𝑔(𝑡) , where the control variables are the total accumulation 

𝑁𝑐(𝑡)  and the accumulation of cruising family 𝑁𝑠,𝑖(𝑡) . Equations (10) and (11) describe 

mathematically the two pricing control mechanisms respectively, where 𝑐1 and 𝑐2 are control 

gain parameters. The concept is that garage users have to pay for the hyper-congestion due to 

large accumulations of cars in the network, while on-street users have to pay for the cost of 

cruising as well. In this way, both types of congestion can be eliminated. Equation (10) states 

that the garage price for the next time interval 𝑡 + 1, 𝑝𝑔(𝑡 + 1), increases if the accumulation of 

car users 𝑁𝑐(𝑡) exceeds the critical accumulation of the network 𝑁𝑐𝑟  (where the maximum 

network production is reached and network production decreases if 𝑁𝑐(𝑡)>𝑁𝑐𝑟). 𝑁𝑐𝑟 is derived 

from the MFD. Equation (11) indicates that the on-street price 𝑝𝑜𝑠(𝑡 + 1) charges the same 

amount for the reduction of network production, and an additional amount for causing cruising 

delay which is proportional to the difference between 𝑁𝑠(𝑡) and a pre-defined threshold 𝑁𝑠𝑇. 

Having 𝑐1 parameter in both (10) and (11) simply means that all car users have to pay for 

congestion independently of the parking choice. Parameter 𝑁𝑠𝑇  can be interpreted as the 

tolerated amount of cruising vehicles, a policy factor influencing the service level of on-street 

parking. We will show in a later graph how 𝑁𝑠𝑇 is chosen. Strategy P1 does not require any 

prediction and is based only on quantities that can be estimated with existing sensing 

techniques.  

A system optimum parking pricing scheme (Strategy P2) 

Strategy P2 aims at achieving a system optimum. The goal of this pricing scheme is to 

minimize the TPC that serves the total demand by optimizing the parking pricings in the 

𝑝𝑔(𝑡 + 1) = 𝑝𝑔(𝑡) + 𝑐1(𝑁𝑐(𝑡) − 𝑁𝑐𝑟)  (10) 

𝑝𝑜𝑠(𝑡 + 1) = 𝑝𝑜𝑠(𝑡) + 𝑐1(𝑁𝑐(𝑡) − 𝑁𝑐𝑟)  + 𝑐2(𝑁𝑠(𝑡) − 𝑁𝑠𝑇) (11) 
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center region controlled by a central operator with a full knowledge of the system, while such 

a strategy is difficult to be implemented due to prediction limitations and day to day variations 

of demand. Mathematically it can be described as the following: 

where 𝑇 is the duration of the time interval 𝑡. Problem (12) is subject to the system dynamics 

introduced in the previous section. We also add a constraint that 𝑝𝑜𝑠(𝑡) <  𝑝𝑔(𝑡). The reason 

is the following. Since on-street parking requires cruising time, if 𝑝𝑔(𝑡) was not larger than 

𝑝𝑜𝑠(𝑡), the cost of garage parking would be less and the optimization will consequently rule 

out the option of on-street parking. Pricing without this constraint will be evaluated as a future 

work. The optimization problem (12) is highly non-linear. We solve this problem by 

sequential quadratic programming. We apply this algorithm for multiple initial values (around 

1000) to avoid convergence to local minima, which might be the case for a non-smooth 

objective function. 

CASE STUDY AND ANALYSIS 

The proposed approach is tested in an idealized two-region bi-modal network. Mixed traffic 

of buses and cars occurs in the outside region (periphery), while an optimum fraction of road 

space in the center region (center) is pre-determined and dedicated to bus usage only, similar 

to case study of Zheng and Geroliminis (2013). We simulate an urban road traffic system for 

4-hours (80 time units), a typical morning period. Demand has a symmetric trapezoidal shape 

with time and the length of peak period is equal to 1hr. A 70% fraction of the demand 

generated in the periphery will travel to the city center and 30% fraction of the demand 

generated in the center will travel to the periphery of the city. A mixed bi-modal MFD for the 

periphery and two single-mode MFDs for the center are utilized and estimated with Leclercq 

and Geroliminis (2013) and Leclercq et al. (2014). Two modes of transport are considered 

available in the system, car and bus. We assume that a fraction 10% of the users are captive 

bus users and do not have access to cars. The average distance between on-street parking 

spaces 𝑠 = 20𝑚. The duration of on-street parking is 1hr. A sensitivity analysis on parking 

duration will be reported as future work.  

In the first sub-section, we show the resultant dynamics of the two-region bi-modal system 

under parking limitation and pricing, illustrating the mechanism of the modeling approach. 

Then we give performance comparison of four parking pricing policies: a base scenario with 

free on-street parking, a flat parking-rate scenario for both garage and on-street, Strategy P1 

and Strategy P2. A discussion is followed in the final sub-section to address indications on 

parking policy from the results. The base scenario applies a time-constant parking garage fee 

𝑝𝑔 which creates crowding for the cruising traffic. The flat parking rate scenario estimates 

constant values of 𝑝𝑜𝑠 and 𝑝𝑔 by minimizing objective function (12).  

System dynamics with parking pricing   

Figure 2 displays the system dynamics for the center region (the region index is skipped in the 

text), under an optimal fixed-pricing scheme where the pricings are obtained through 

optimization, minimizing the total cost of the users. The optimal prices are 𝑝𝑜𝑠 = 0.4$/ℎ𝑟 and 

𝑝𝑔 = 1.6$/ℎ𝑟. In Figure 2(a) and (d), it can be observed that mode share of buses increases 

during peak-hour as traveling with cars experience higher travel costs than buses. From the 

outflow-accumulation MFD in Figure 2(b) (with the critical accumulation 𝑁𝑐𝑟 = 5200veh and 

min
 𝑝𝑜𝑠

(𝑡),𝑝𝑔(𝑡)
𝑍 = ∑ 𝑇𝑃𝐶𝑖

𝑚(𝑡)

𝑡,𝑖,𝑚

= ∑ 𝑁𝑃𝑖
𝑚(𝑡) ∙ 𝑇

𝑡,𝑖,𝑚

 , 
 

(12) 
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a decreasing branch up to 𝑁𝑐(𝑡) = 9000veh for car network), we can clearly confirm the car 

network experiences congestion. Judging from the time series of cruising delay in Figure 2(c), 

limitation of parking contributes to the high travel cost of cars as well. Nevertheless, even if 

demand is high, on-street parking is not fully occupied because travelers have alternatives of 

lower total cost (e.g. public transport or garage with fee). Note that such a pricing scheme 

cannot fully avoid neither congestion nor cruising. The travel cost of buses remains nearly the 

same since buses are operated on the dedicated lanes with scheduled frequencies, although a 

slight increase can be found in Figure 2(d) during the peak-hour, which is a reflection of speed 

reduction due to the longer dwelling time for boarding more passengers. Congested states can 

be observed in the MFD in Figure 2(b), where different values of outflow occur for the same 

accumulation. The reduction of outflow can be explained by the reduction of on-street parking 

availabilities. As cars have to cruise longer distance to compete for a parking space, the outflow 

drops accordingly (outflow is production over trip length).     

 
Figure 2 System dynamics and traffic performance under the optimal constant parking pricing scheme for the 

center region: (a-top left) mode share of bus 𝜔𝑐𝑒𝑛𝑡𝑒𝑟
𝑏  and total travel demand over time, (b-top right) the MFD 

of the center region car network with congestion observed, (c-down left) the prices of  𝑝𝑜𝑠 and 𝑝𝑔, and cruising-

for-parking time, and (d-down right) the cost of traveling with each mode over time. 

Figure 3 illustrates the resultant system performance under the feedback-type time-dependent 

pricing Strategy P1. Prices are updated every 15min (5 interval units). In Figure 3(c), the 

time-dependent pricing rates 𝑝𝑜𝑠(𝑡) and 𝑝𝑔(𝑡) are plotted where higher pricing rates are found 

for the peak hour. Figure 3(a) plots the cruising condition of the basic scenario. For the 

applied Strategy P1, the objective is to control the cruising delay under 3min therefore we 

choose a value of 900veh for 𝑁𝑠𝑇  (note that 𝑇𝑐𝑟𝑢 may be monitored directly from existing 

data collection technology and used to control the pricing for cruising, nevertheless the same 

principle applies). Then shown in Figure 3(d), the accumulations 𝑁𝑐(𝑡) and 𝑁𝑠(𝑡) fluctuate 

closely around the critical values 𝑁𝑐𝑟 and 𝑁𝑠𝑇, though there are a few cases where congestion 

exceeds the desired states. This shows consistency with the expected system dynamics by 

feedback controllers.  
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Figure 3 (a-top left) relationship between cruising delay 𝑇𝑐𝑟𝑢 and cruising vehicles 𝑁𝑠,𝑐𝑒𝑛𝑡𝑒𝑟  in the basic scenario; 

System performance by Strategy P1: (b-top right) the MFD of the center region car network, (c-down left) the 

prices of  𝑝𝑜𝑠 and 𝑝𝑔, and 𝑇𝑐𝑟𝑢, and (d-down right) the evolution of accumulations with the desired states in 

dotted lines: upper red for critical accumulation 𝑁𝑐𝑟 and magenta for the cruising threshold 𝑁𝑠𝑇  

Now let us examine the performance under Strategy P2. The same graphs of Figure 2 are 

reproduced and displayed in Figure 4. Comparing to Strategy P1, the cruising delay and 

accumulation further decrease. Higher maximum outflow can be observed from the MFD. With 

a careful investigation on the resultant mode shares of bus, we conclude that the improvement 

of performance under Strategy P2 is due to its capability of triggering an earlier mode shift from 

cars to buses during the on-set of the peak-hour. Remarkably, such small change (roughly a 

mode share difference of 2% during 20min) in the mode share creates significantly different 

traffic performances. Furthermore, it should be highlighted that less total pricing is charged on 

the users in strategy P2.   
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Figure 4 System dynamics and traffic performance under the optimal Strategy P2. The same graphs are 

reproduced as in Figure 2. 

Efficiency evaluation of the pricing schemes  

The proposed modeling approach is capable of producing the physics of overcrowding in 

general traffic and on-street parking, the effect of cruise-for-parking, and the aggregated 

behavioral change (mode choices) given parking space limitation and cost. The second part of 

this case study is to test and attain efficient pricing strategies. We compare the resultant system 

costs among the 4 scenarios by the following performance indicators: the savings in total person 

hours travelled (PHT) comparing to the base scenario, the total toll paid (TTP, converted to time 

unit with a mean value-of-time of 16$/hr), the toll efficiency (TF) which is the ratio between the 

savings in PHT and the corresponding TTP, and the average cruising delay which is the total 

delay time divided by total amount of on-street parkers. The statistics are listed in Table 2.  

Table 2 Comparison of the performances of different pricing schemes 

 Saving in PHT 

(hrs) 

Total toll 

(hrs) 

Toll efficiency 

(ratio: PHT.sav/TTP) 

Ave. cruising 

delay (min) 

Base scenario PHT=45337 660 0 3.7 

Constant pricing 1211 (2.7%) 2641 45.8% 1.9 

Strategy P1 5944 (13.0%) 7207 82.5% 1.4 

Strategy P2 6990 (15.5%) 5857 119.5% 1.2 

The base scenario applies a flat rate to garage parking only. In this case, on-street parking is 

highly desired at first, as parking on-street experiences less cost until the cruising time cost is 

equivalent to garage pricing rate. However due to the large demand for on-street parking, on-

street parking becomes full and results an average 3.7min cruising delay for the later travelers. 

For the studied network, the average travel time per trip is 6min under free-flow condition and 

15min under congestion. A 3.7min cruising time is a relatively considerable amount. Small 

improvement in PHT can be found when flat-rate tolls are implemented and optimized for both 

garage and on-street parking. From an efficiency point of view, however, the constant-pricing 
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strategy makes users pay two times more than they gain in the reduction of travel time (in terms 

of PHT savings), reflected by the toll efficiency value of 45.8%.  

Applying Strategy P1, it is observed that the PHT significantly decrease by 13%. To achieve 

this, however, excessive parking tolls have to be charged. The resultant toll efficiency is around 

80% albeit improved over 45% of applying constant pricings. Stimulating results are obtained 

by the implementation of Strategy P2. The toll efficiency ratio is found nearly at 120%. 

Moreover, the cruising delay by Strategy P2 outweighs Strategy P1 by 15%. The difference in 

efficiency between the two pricing strategies P1 and P2 can be explained as the following. Since 

Strategy P1 is responsive, controllers (10) and (11) do not explicitly consider congestion 

evolution. While benefiting from the optimization, Strategy P2 is able to predict and adapt 

traffic conditions and set optimal tolls to trigger an early mode shift. As mentioned-above, a 

slight mode shift during the on-set of peak-hour could lead to substantial improvement. While 

strategy P2 is difficult to be implemented in reality as it requires future predictions, a careful 

analysis of historical data can possibly make this feasible through a model predictive control 

approach where uncertainty will be treated in the optimization horizon. This is a challenging but 

interesting future direction.       

Parking policy indication 

Time-dependent parking-rate represents the current mainstream parking price management in 

urban areas, though the rates may be determined based on different criteria. For instance, the 

public-owned parking facilities in the city of San Francisco operate demand-responsive parking 

pricing which updates the prices at a monthly or shorter basis to reduce cruising time. Strategies 

P1 attempts to employ such pricing mechanism with a second objective to reduce general 

congestion. The result shows that the strategy indeed effectively reduces the total PHT and 

average cruising time. Strategy P2 demonstrates higher efficiency thanks to the opportunities of 

adapting the changing conditions of both the users and the parking prices. Such opportunities in 

practice can be offered through online information system.     

Note that in this study, we assume policy-makers operate the two parking facilities and have full 

control of the pricings 𝑝𝑜𝑠 and 𝑝𝑔. In practice, the authorities belong to different operators, e.g. 

city policy-makers operate on-street parking while real-estate companies operate garage parking. 

These operators can be considered that have different objectives, e.g. city tries to minimize the 

generalized cost of all users, TPC, while garage operator maximizes its profit. Then Problem 

(12) can be re-formulated as the follows: 

where 𝑇𝑜𝑠𝑖
𝑐(𝑡), 𝑇𝑔𝑖

𝑐(𝑡) is the total toll collected at time 𝑡 in region 𝑖 from car users using on-

street parking and garage parking, respectively.  

It can be seen that direct conflict of interests, represented by the term 𝑇𝑔𝑖
𝑐(𝑡) in Equations (13) 

and (14), exists between the two operators. Competition behaviour thus should be expected. Let 

us provide some preliminary result on the system performance under conditions with the 

existence of competition, while more detailed investigation will be reported in a later version of 

the paper.   

min
 𝑝𝑜𝑠

(𝑡)
𝑇𝑃𝐶 = ∑ (𝑃𝐻𝑇𝑖

𝑚(𝑡) + 𝑇𝑜𝑠𝑖
𝑐(𝑡) +

𝑡,𝑖,𝑚

𝑇𝑔𝑖
𝑐(𝑡))  (13) 

max
 𝑝𝑜𝑔

(𝑡)
𝐵𝐺 = ∑ 𝑇𝑔𝑖

𝑐(𝑡)

𝑡,𝑖

  (14) 
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Assume now that the two operators are cooperative with each other and they compete to 

maximize the common profit. Then solving Problems (13) and (14) can be considered as a bi-

objective optimization problem. We apply standard optimization procedure, to obtain the 

efficient frontier. Two scale parameters valued (0, 1) are given to the two objective functions 

respectively, where the sum of the two parameters equals to 1. With the scale parameters, the 

problem is transformed into a single-objective optimization and different Pareto optimal 

solutions are produced. Figure 5(a) displays the efficient frontier of this problem. With our 

system model, the potential combination of management pricing policies can be readily 

estimated.   

Assume a second scenario that the two operators are selfish. The pricing competition is a 

responsive and negotiate-alike process, where each operator changes the pricing strategy after 

recognizing the impact of the other party’s action. We consider solving such competition by a 

leader-follower optimization procedure, where the policy-maker as the higher level leads the 

process and the real-estate companies as the lower level follows. At each competition round, 

each operator tries to optimize its own objective given the action of the previous one. To avoid 

oscillatory behavior of the optimization procedure, we add constraints that the actions of the one 

optimization problem should not worsen the other problem by more than 20% compared to the 

previous step. Comparing to the existing applications of bi-level optimization in transport-

related researches, such as in Yin (2000), the challenges here are two-fold: (i) the two objective 

functions have direct conflict, and (ii) the existence of equilibrium or a competition efficient 

frontier where the two parties cannot improve their profit. Result of a simulated competition is 

displayed in Figure 5(b), which illustrates that a long-term equilibrium can be reached for the 

pricing strategies between the two operators. On-going work makes further effort in the 

investigation of convergence towards this direction. 

   
Figure 5 (a) The efficient frontier between maximizing the system performance (minimizing total cost TPC) for 

the on-street parking operator and maximizing BG the revenue for garage parking operator; (b) The evolution of 

the costs of TPC and BG over 20 rounds of leader-follower pricing competition 

CONCLUSION 

In this study, we proposed a macroscopic modeling approach for modeling multi-modal traffic 

system with parking limitation and cruising-for-parking flow. Parking limitation was integrated 

in the developed multi-modal system model, where vehicles need to cruise for parking before 

reaching destination. The time of cruising was estimated by assuming the probability of finding 

a parking space follows a geometric distribution and depends on the dynamic parking 

availability. The effect of cruising on the global performance, e.g. the average speed, was also 

captured, by the MFD dynamics. A case study was carried out in a two-region bi-modal 

network. Two parking choices were considered: (i) limited on-street parking requiring cruising, 
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and (ii) unlimited garage parking with higher parking fee but no cruising cost. The resultant 

system behavior under parking limitation and pricing were consistent with the common 

expectations. We then used the system model to test two network-level parking pricing 

strategies. Strategy P1 adapted a feedback-type controller for determining the parking price, 

which was congestion- and parking availability-dependent. Applying this pricing strategy, 

traffic performance was maintained at desired (controlled) levels. Strategy P2 was obtained 

through optimization of the total cost (PHT + parking fee). Applying this strategy, pricing 

efficiency was further improved, as the prices were determined with long-term impact taking 

into account. Inspired by this result, we investigated the impact of competition on the 

performance of the pricing strategy, assuming that the authorities of on-street and garage 

parking belong to different parties who manage prices with different objectives. We presented 

preliminary results of cooperative-competition via a bi-objective optimization, while a bi-level 

optimization framework was proposed to simulate a responsive and negotiate-alike parking 

pricing market. More detailed discussion will be reported in a later version of the paper.  

On-going work extends the investigation on the efficiency of parking management under 

pricing competition. Sensitivity analysis will be carried out on parking duration and parking 

capacity to reveal their impacts on parking choices, for instance, excessive on-street parking 

space may lead to cases that fewer travelers go for garage parking even though it is much 

cheaper. Furthermore, the current treatment of cruising is dimensionless, meaning that the 

cruising cost is estimated without identifying the detailed routes of cruising. Such consideration 

aims at the average cost at system level and ignores the cruising possibilities at disaggregated 

level. Nevertheless large disaggregated heterogeneity is not expected given the spatial 

correlations in the distribution of congestion and well-defined bi-modal MFD can possibly be 

found for more complex city structures.   
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