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1.	  Introduction	  

Economists, planners, and policy makers in related fields often seek to understand the 

determinants of urban land-use development patterns and their associated land values. 

They also seek to understand future trajectories of these factors. Economists often 

employ hedonic regression models for these purposes. On their own, such models reveal 

correlations between the built environment, its spatial structure, and the characteristics of 

market participants and market land values. By combining regression models with land-

use change projection algorithms developed in other fields (Verburg et al. 2006; 

Plantinga and Lewis 2014), such models can also be used to project trajectories of land-

use change and land value (Irwin and Bockstael 2002). In more recent work, hedonic 

regressions have also been used to form the basis of transition rules for representing 

market interactions and endogenous price formation in agent-based computational 

economic and microsimuation models (see (Huang et al. 2014) for a review). In either 

case, the resulting model projections are often used for policy, scenario, and impact 

analysis. 

Hedonic models have proven useful in defining implicit prices of attributes for 

heterogeneous goods such as housing goods (Irwin 2002; Bin and Landry 2013). In 

theory, the transaction prices to which a hedonic model is applied represent a short-run 
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equilibrium result derived at the intersection of the representative demand and supply 

curves for differentiated products (Rosen 1974). Yet, regression models offer only a 

reduced-form representation of the underlying structural determinants of decision-making 

in markets.  In principle, a market transaction represents the result of bargaining between 

a buyer and a seller, each having their own willingness to pay or accept (WTP/WTA) and 

corresponding bid or ask price. However, if a regression model is estimated based on 

market transaction data, it reflects the net result of negotiation between buyers and sellers 

at a certain moment in time. As noted by Bockstael (Bockstael 1996) a hedonic model 

estimated as a snapshot of a market at one point based on spatial attributes in time may 

not capture underlying preferences of buyers or costs of sellers, and is not robust to 

changes in buyers preferences or incomes or in the supply of heterogeneous properties. 

Thus, in principle it is impossible to identify the individual WTPs of buyers and WTAs of 

sellers that underlie the equilibrium transaction price. This goes in line with Rosen’s 

(Rosen 1974) statement that “estimated hedonic price-characteristics functions typically 

identify neither demand nor supply”. Nevertheless, hedonic analysis based exclusively on 

spatial attributes of properties is often applied to land and housing markets.   

In the best-case scenario however, a researcher might have access to information 

about buyers and/or sellers (referred to as “agent data” in this paper), in addition to data 

on the market property and its built form and locational attributes (the latter two are 

referred to as “spatial data” in this paper).  In this case, a regression model could be used 

to estimate an upper or lower bound of WTP or WTA. However, in most current 

applications, hedonic models are estimated using only built form and locational attributes 

data (hence referred to as hedonic analysis based on “spatial data”, HAS ).  While often 
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researchers are lucky to even access basic transaction data, the consequences of omitting 

agent data need to be considered. When characteristics and budgets of buyers and sellers 

are omitted, as demonstrated in our earlier work, HAS models may suffer from omitted 

variable bias (Filatova et al. 2009b). This bias should in principle also affect land-use 

patterns and price projections based on HAS models. However, this potential source of 

bias is yet unexplored. 

Hedonic regression is applied to project change using a range of methods 

(Plantinga and Lewis 2014). The simplest of these sequentially selects locations and 

allocates them to their highest value or most suitable use, limiting the number of 

converted locations to a pre-determined number. More sophisticated methods allocate 

locations probabilistically, conducting Monte-Carlo style runs to create distributions of 

land-use change outcomes.  At the higher end of the complexity spectrum, simulated 

markets are used to project change (Huang et al. 2014). When economists make change 

projections using regression models, they tend to follow the first or second approach, 

both of which omit important market mechanisms such as budget constraints and 

competitive bidding.  As shown in recent work, in a theoretical context, this omission 

affects projected rates of change and patterns of land values (Huang et al. 2013; Sun et al. 

2014). The implications of this omission when regression models are used have yet to be 

explored. Further, although allocation via a market mechanism seems a promising 

approach, its potential effectiveness has yet to be formally assessed. This paper will use 

an agent-based economic approach to study these two open questions.   

Agent-based modeling (ABM) is a simulation methodology that is increasingly 

used throughout the social sciences (Berry et al. 2002; Edmonds et al. 2008; Waldrop 
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2009) and in economics in particular (Arthur 1999; Tesfatsion 2002; Farmer and Foley 

2009). ABMs are computational simulation models that operate at the scale of real-world 

decision making and grow a macro-phenomena of interests (for example prices and trade 

volumes in economics) through direct representation of micro-economic decisions and 

interactions among economic agents. ABMs are increasingly being applied in an 

economic context, to address problems whose complexity renders them analytically 

intractable (Tesfatsion and Judd 2006). In contrast to mathematical or computational 

techniques traditionally used in economics, ABMs are simulation-based, not equilibrium-

based. Although models may reach equilibrium, the equilibrium results from interactions 

among lower-level entities.  ABMs can thus be used as computational laboratories to 

explore the path and equilibrium of an economy under different scenarios representing 

particular market structure, populations of actors, and sets of economic incentives and 

constraints (Tesfatsion 2006). 

An active subfield in ABM is modeling land markets. These models combine 

representations of key buyer and seller actors, a spatial landscape, and a set of rules 

governing transitions. They produce a history of land-use change events and land 

transactions, from which measures of economic and spatial structure can be derived. 

Recent models are reviewed by (Parker and Filatova 2008; Irwin 2010; Schreinemachers 

et al. 2010; Huang et al. 2013; Parker 2014). 

This paper uses an ABM of a land market (Land Use in eXurban Environments, 

or LUXE) to explore the potential real-world implications of using hedonic regression 

models to project land-use change patterns.  Using the ABM framework as a virtual 

laboratory, we generate output data from a simulated land market where land is allocated 
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through a budget-constrained competitive bidding process. We consider this as our “real-

world data” baseline.  We then apply standard statistical techniques used to analyze real 

world transaction data and to make price and spatial patterns projections.  

We then estimate hedonic regression models based on these simulated land 

values.  We first explore what would be the best case a researcher might face 

empirically—one where individual buyer data (with sellers assumed to be homogeneous) 

are available, creating the opportunity to estimate a theoretically unbiased hedonic model 

(HAAS). We also estimate a similar regression using spatial data only, the more common 

real-world case. (HAS). 

We then use these regression results to conduct four experiments projecting 

project land-values and spatial patterns of, land-use change using a modified version of 

LUXE. For each hedonic regression (HAS and HAAS), we apply two projection algorithms. 

In each projection, the estimated hedonic model is used to represent the buyers’ WTP for 

properties.  The best-case scenario utilizes the LUXE model to allocate land through a 

simulated market.  The second case uses a first-come first-served algorithm, which is 

equivalent to algorithms often used in practice for real-world land-use change projection.  

For all four experiments, we analyze the difference between the outcomes simulated 

using the hedonic WTP and the original “real-world” outcome, derived using a 

constrained utility maximization approach, comparing both land values and spatial 

patterns.   

Data from these four experiments are used to explore the following research 

questions: 
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• How successfully can hedonic-regression-based projection algorithms be used to 

recreate the structure of urban landscapes, when used to project land-use and 

land-value change? 

• How is the accuracy of the projection process affected by the degree of market 

representation used in the projection algorithm and the availability of actor-level 

data to parameterize the regression model? 

The goal of our experiments is to bring a new perspective to methods currently 

used to estimate land values and project change. Specifically, this paper  explores the 

potential added value of (1) obtaining buyer and seller data to supplement hedonic land 

value regressions, (2) using competitive bidding algorithms to project land-use change, 

given a set of estimated empirical WTP values, and (3) enriching statistical techniques 

applied in spatial economics by employing an ABM as a virtual laboratory to explore the 

impacts of omitting agent-level data in hedonic analysis.   

The paper is structured as follows. Section 2 briefly reviews the structure and 

terminology of the LUXE model, and presents our experimental design. The simulation 

results and their methodological implications are discussed in Section 3. Section 4 offers 

summary conclusions and discusses limitations and next steps.    

2.	  Methods	  

2.1 Agent-based land market model: LUXE  

LUXE is a stylized ABM of urban land development, which was designed 

specifically to explore the implications of alternative representations of land-market 

factors on land-use modeling outcomes (Robinson et al. 2013). It differentiates among 



	   7	  

four key elements of land markets: preferences, budget constraints, competitive bidding, 

and endogenous relocation. The LUXE model implements several levels of market 

representation gradually building up the complexity. Level zero (L0) starts from land 

allocation driven only by location preferences of agents. An addition of budget constrains 

(L1) and competitive bidding (L2) allows the tracing of some key land market dynamics 

in a spatially heterogeneous landscape (Parker et al. 2012). This structure facilitates 

experiments that relate market levels to various model outcome metrics measuring the 

level, structure, and pattern of land-use change and land values. LUXE’s assumptions and 

structure are designed to closely mirror analytical analogs such as the Alonso-Muth 

model under its Level 2 (L2) implementation. The L2 model is also equivalent to the 

ALMA model (Filatova et al. 2009a; Filatova et al. 2009b; Filatova et al. 2011).  

The basic structure of LUXE, described in detail by Huang et al. (2013) and Sun 

et al. (2014), is illustrated in Figure 1 (Sun et al. 2014). LUXE is a bilateral land market 

model with sellers seeking to sell their land and buyers trying to acquire properties that 

maximize their utility. For the purpose of this paper we have implemented homogenous 

sellers, who all put their parcels on the market at a fixed price equal to the agricultural 

land price at initialization.	  	  In	  any	  model	  implementation,	  all	  buyers	  are	  initially	  active	  

in	   the	   market.	   	   Buyers	   are	   sequentially	   active,	   and	   when	   active,	   they	   assess	   all	  

parcels	  on	  the	  market,	  calculate	  their	  utility	  for	  each	  parcel	  and	  identify	  the	  parcel	  

on	  the	  market	  that	  provides	  highest	  utility.	  	  In	  different	  implementations	  of	  market	  

levels	   this	  process	  may	  be	  constrained by their budget (L1), and buyers may compete 

with other buyers for the same parcel (L2). When competitive bidding is present, the 

seller evaluates all the bids he has received, and selects the highest, if it is above his 
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WTA. If a buyer does not succeed in buying a property, she remains on the market and 

searches again in the next round. Unsuccessful sellers also remain on a market and wait 

for an interested buyer. A short-run equilibrium is reached when no more transactions 

occur. In the absence of a market (L0), this occurs when all buyers	   have	   acquired	   a	  

property. In the presence of market mechanisms (L1 and L2), when all the gains from 

trade are exploited, some buyers typically do not find a parcel to purchase, which implies 

that quantity and location of land conversion is endogenous.   

[Figure 1 about here] 

Previous experiments with LUXE delivered the following key findings: 

• As would be expected, the imposition of budget constraints and competitive 

bidding reduced the projected quantity of change. The primary effect moving 

from L0 to L2 came through the budget constraint, by preventing economically 

implausible transactions. However, a smaller effect occurred through buyer 

competition, as some buyers were unable to compete for their preferred parcels, 

and, in this open city model, could not compete for an alternative parcel for which 

their WTPs was higher than the seller’s reservation price (Sun et al. 2014). 

• When buyers are heterogeneous in some aspects, competitive bidding is essential 

in order to reveal the downward-sloping price gradient predicted by theory and 

empirical observation (Huang et al. 2013; Sun et al. 2014). This result implies  

that it is essential to represent both actor heterogeneity and the process of 

competitive bidding, if estimates of the value of distance are sought from a model.   

• In terms of spatial pattern, on average, higher levels of market representation 

reduced measures of model spread, although particular parameter combinations 
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showed different outcomes (Figure 2, (Sun et al. 2014)). Measures of 

fragmentation, however, increased, attributed to lower infill rates and better 

market sorting for preferred open-space amenities. However, landscape measures 

that controlled for quantity differences showed that the full market model 

projected less sprawling patterns (Sun et al. 2014).  

[Figure 2 about here] 

• In terms of effect of heterogeneous agent characteristics, preference heterogeneity 

for open-space amenities tends to lead to more compact close-in landscapes but 

more dispersed suburban landscapes, as agents with preference for proximity sort 

themselves to central areas. Budget heterogeneity affects socio-economic 

measures, leading in particular to higher land rents when markets are fully 

implemented. Differences due to increased heterogeneity are magnified as the 

degree of market representation increases (Huang et al. 2013).   

2.2 Experimental Design 

To answer our two research questions several experiments are conducted 

following the flow chart in Figure 3.  

[Figure 3 about here] 

In the first step (top right box), the original LUXE model is used to conduct 

multiple runs, following the same methods described in Huang et al. (2013) and Sun et al. 

(2014), using its original utility function based on a Cobb-Douglas form andWTP

function: 

U = Aα ⋅Pβ                                                                (1) 

WTP = B− t ⋅D( ) ⋅ U 2

b2 +U 2                                                    (2) 
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where U stands for utility; A  is the measure of open space amenity; and P stands for the 

proximity to the CBD, which is a standardized measure of the distance to the CBD (D ). 

Both A andP range from 0 to 1;α  and β are the weights for A andP respectively, and 

α +β =1 ;WTP denotes the buyer’s bid price in this simple model implementation;B

stands for the individual budget, and t ⋅D  is the transport cost to the CBD, with t being 

the transport cost per unit of distance; b is a constant that represents the affordability of all 

non-housing goods. The output from these model runs, for the purpose of our four 

computational laboratory experiments, is considered to represent  “real-world” 

transaction prices and land-use patterns.  

In the second step (bottom right box in Figure 3), we estimate hedonic 

regressions, using the transaction results of the original “real-world” model as their 

dependent variable, producing the estimatedWTP (WTP _ S andWTP _ AS ) functions. For 

WTP _ S andWTP _ AS , regression functions were as follows respectively: 

                 WTP _ S = a1 + b1 ×D+ c1 × A                                              (3) 

    WTP _ AS = a2 + b2 ×D+ c2 × A+ d2 ×B+ e2 ×PR                                (4) 

where WTP _ S denotes the estimated WTP  based on the spatial data only, which are the 

distance to the CBD (D ) and the open space amenity ( A ) respectively; WTP _ AS stands 

for the estimated WTP 	  based on the spatial data and the agent data, which also include 

the budget (B ) and the preference for proximity (β); and a1 , b1 , c1 , a2 , b2 , c2 , d2 , and 

e2  stand for the estimated coefficients from regressions. 

In the third step (bottom of left box in Figure 3) , we replace the original WTP  

and utility functions with the hedonic equations generated above. Note, that this 
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replacement represents a change in model structure on two occasions. First, the analytical 

utility function used for ranking parcels to bid on is replaced with the simulated money-

metric utility— i.e. equation 3 or 4 replaces equation 1. Second, the hedonic WTP 

function replaces the analytical WTP function— i.e. equation 3 or 4 replaces equation 2. 

The modified models were used to conduct multiple runs (each experiment was run 30 

times with different random seeds) and to generate corresponding “simulated” transaction 

prices and land-use patterns. For each stochastic seed used to generate the original model, 

the corresponding regression model is used.  The same stochastic seed is then used for the 

land-use change projection experiments.  This implies that the generated population of 

buyers will be identical for each paired experiment.  

In the fourth step (left panel), comparisons of transaction prices and land-use 

patterns between the original model (utility driven by Cobb-Douglas Utility functions) 

and the simulated models (utility driven by hedonic land value regressions) are made to 

explore how effectively hedonic regression functions could be used to project land-use 

and land-value change. 

As described in Table 1, this paper presents five experiments under market levels 

L0 0 and L2 .There is no competitive bidding or budget constraints in market level L0, 

which leads to the sequential allocation of parcels agent-by-agent based on the first-

come, first-served rule. In the market level L2 experiments both competitive bidding and 

budget constraints are present. In each case (L0 and L2), simulated land-use change 

projections are done using either spatial data only or spatial-plus-agent regressions.  

Therefore, five experiments are conducted: Original model; L0_WTP_S; L0_WTP_AS; 

L2_ WTP_S; L2_ WTP_AS.  
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[Table 1 about here] 

As described in Table 2, constant parameters and market-level parameters 

representing agents’ characteristics, the economic environment and the spatial 

environment are used to perform all experiments in the models. 

[Table 2 about here] 

 

3.	  Results	  

3.1 Hedonic analysis  

Results of two linear hedonic regressions applied to the data from the original 

model are shown in Table 4. In the HAS  model  (WTP_S from Equation 3) independent 

variables (D-distance to the center, A-open space amenity level) represent spatial 

heterogeneity. In the HAAS model (WTP_AS) from Equation 4) independent variables (D, 

A, B-individual budget, PR/ β -preference to proximity) represent both spatial and agents’ 

heterogeneity.  In each case, the realized transaction price is the dependent variable.  

Conceptually these regressions are similar to those presented in (Filatova et al. 2009a; 

Filatova et al. 2009b; Filatova et al. 2011). Consistent with previous work, the spatial 

only regressions show evidence of omitted variable bias, as expected. As shown in table 

4, the influence of distance parameter, represented by the b coefficients, is uniformly 

higher in the spatial-only model, as is the open-space amenity value (represented by the c 

coefficients). The model goodness-of-fit is also uniformly lower in the HAS case. The 

take-home message is that, while the use of hedonic regression based on only spatial 

variables is a practical compromise that many researchers must make, there is a potential 

cost to that compromise in terms of reduced model accuracy due to missing variables.  
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Part of the goal of this paper is to assess what practical difference this compromise makes 

when the hedonic models are used to project land-use change.   

[Figure 4 about here] 

[Figure 5 about here] 

[Table 4 about here] 

3.2 Land-use change and transaction prices patterns 

A graphical exploration of land-use and transaction price patterns is shown in 

Figures 4 and 5. Figure 4 compares the original model to the outcomes of land-use 

change projections using the L2 model—the one that uses market mechanisms to project 

change. These two cases represent what we consider to be the best current method to 

project land use change. Our expectation is that L2_WTP_AS should be our best case, 

with L2_WTP_S falling somewhat behind due to the omitted variable bias.   

[Table 5 about here] 

In the original model, clear relationships are seen between transaction prices and 

distance (negative) and budget (positive). These patterns are strongly qualitatively 

mirrored in L2_WTP_AS, indicating initially that the experiment reasonably replicates 

relationships in the original landscape. However, although L2_WTP_S effectively 

replicates the value of distance and open-space amenities, the output transaction values 

do not reflect the increasing budget purchase power (Figure 4f).  On the one hand, this 

may appear surprising given that agents are operating under budget constraints. On the 

other hand, it is understandable as buyers’ market valuations and bids don’t reflect their 

differential buying power in L2_WTP_S, in contrast to L2_WTP_AS,  (Figure 4b).   
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Moving on to the level 0 models (Figure 5), we explore the results of land 

allocation via the first-come-first-served maximum utility rule, which lacks both a budget 

constraint and competitive bidding. As expected, this algorithm does not perform as well 

as the market algorithm, even when the agent-level variables are included.  However, 

L0_WTP_S still reveals a downward sloping rent gradient related to the value of reduced 

transport costs from proximity. This result may initially seem surprising since our 

previous work with the LUXE model showed that when agent heterogeneity is present, 

the L0 model failed to reveal a downward-sloping price gradient. The downward-sloping 

price gradient seen here can be explained by two factors.  First, since agent-level 

characteristics are supprsed in the regression equations, heterogenous buyers are 

essentially represented as homogeneous in the estimated WTP functions, as their 

differential agent characteristics are not expressed through independent variables.  

Second, as seen in the regression output, the estimated value of distance is magnified due 

to omitted variable bias.  Thus, the projections reveal a downward sloping rent gradient, 

even in the absence of competitive bidding.  As expected, no relationship is seen between 

budget and price.  Open-space amenities remain fairly robustly represented.  This success 

may be due to the fact that, given the Cobb-Douglass utility specification of the original 

model, buyers face a tradeoff between amenities and proximity, and proximity is highly 

correlated with transportation costs.  Thus, open-space amenities values, also correlated 

with a spatial variable reflecting their level, are picked up by that spatial variable.  The 

result may not be robust in a case where buyers had highly variable and non-monotonic 

preferences for open-space amenities.     
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Moving on to the L0_WTP_AS outcome, the rent gradient is now much more 

weakly represented.  This result is consistent with the previous LUXE results, however, 

and can be explained by the lack of competitive bidding when buyers are heterogeneous.  

Interestingly, although the budget constraint is not binding, a strong relationship is seen 

between budget and price, reflecting the presence of the budget as an independent 

variable in the regression model.  (Note that in the original LUXE model, the budget 

constraint served mainly to cut off economically implausible transactions, where the 

buyer’s WTP was below the seller’s reservation price.) 

 

3.3 Spatio-temporal patterns of land rents 

Figures 6 and 7 further explore patterns of land rents.  The 3-D plots show the height of 

the transaction price, with color coding for the transaction time.  They show that the 

market algorithm sequentially allocates land from the city center (initially most valuable 

as it is high in both proximity and amenities) outwards, with land transaction prices 

falling over time.  The figures show that, as expected, the L2 models both reasonably 

replicate the pattern and timing of land transactions.  In contrast, the L0 models project 

faster land transitions in the absence of competition, with the L0_WTP_AS model failing 

to reveal the downward-sloping land rent gradient.    

[Figure 6 about here] 

[Figure 7 about here] 

Figures 8 and 9 show a top-down view of land transactions and prices, which more 

clearly reveal commonalities in land-use pattern.   

[Figure 8 about here] 
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[Figure 9 about here] 

These figures are supplemented in Table 5 by formal average measures of pattern 

between experiments.  Table 5 compares values of selected quantity and pattern output 

metrics, showing their statistical significance relative to the average “original model” 

baseline.  Figure 10 provides a graphical summary of differences between experiments.  

Sun et al. (Sun et al. 2014) break measures of land-use pattern down into several aspects 

for the purpose of comparison: spread, fragmentation, and quantity-controlled sprawl.  In 

this paper, we report metrics that reflect the first and third aspects.  Average 

transportation cost Ctran  reflects overall spread. Metrics ρe
q

, AI
q

, LSI q , and CI
q  reflect 

patterns of sprawl, adjusted for differing numbers of converted cells between model runs.  

While ρe
q  is positively correlated with patterns that would be viewed as fragmented, the 

other three measures are negatively correlated.  

 [Table 5 about here] 

[Figure 10 about here] 

3.4 Quantity of change 

As discussed in Sun et al. (Sun et al. 2014), the quantity of land-use change is 

essentially endogenous in the L2 models, which are open city models, but exogenous in 

L0 models, where each buyer agent acquires a parcel.  Consistent with this, the quantity 

of change is much higher in the L0 experiments.  Consistent with common practice, 

however (Verburg et al. 2006; Plantinga and Lewis 2014), these quantities could be 

reconciled by constraining the number of agents to that in the original model.  Notably, 

however, the average quantity of change in the L2 experiments is quite close to the 

original model, which encouragingly indicates that market mechanisms based on hedonic 
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regression might project quantity of change reasonably well.  That said, both quantities of 

change are significantly different from the original model.  (Note that since we are doing 

essentially population-level analysis, some computational modelers reject the concept of 

using statistical significance to assess differences between model runs.  However, as we 

are comparing models with different rules and structure, we argue that the the use of 

significance levels is valid in this context.) 

3.5 Economic Metrics 

Mean	   transport	   cost	   (spread)	  Consistent with the higher quantities of change, the 

mean transport cost in the L0 experiments is higher than the L2 ones.  Again, although 

the L2 outcomes are significantly different, they are in the same range as the original 

outcome.   

Transaction prices Since reservation prices and budget constraints are not binding in the 

L0 models, the minimum transaction prices fall below those seen in the original model, 

skewing average values downward.  Maximum prices show less range.  However, as 

expected, L2_WTP_AS shows the strongest match to the original model, as budgets are 

reflected in valuation, and competition allocates parcels to the buyer with the highest 

value.  These measures are significantly different at only a 10% level.   

3.6 Measures of fragmentation  

Measures of fragmentation show that the L2 experiments produce more compact 

and less fragmented landscapes than the L0 models.  (Note that this result could be a 

function of the particular parameter settings used in this model, in particular the 

assumptions about preferences for open space and proximity.)  As shown in Table 5, 

again L2_WTP_AS comes closest in term of replicating the fragmentation patterns of the 
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original model, with outcomes being statistically significantly different at only a 10% 

level.   

	  
4.Conclusions	  and	  discussions 

In this paper, we have presented a thought experiment using an agent-based land 

market model as a computational laboratory, in order to theoretically explore how 

effectively hedonic regression can be used to form the basis for land-use and land-value 

change projection algorithm.  Working from the assumption that the output from a utility-

based, budget constrained land market model represents a set of “real world” 

transactions, we estimated hedonic regressions, one incorporating and one leaving out 

buyer characteristics.  We then compared the effectiveness of two alternative land-use 

change projection algorithms.  The first used a very similar market mechanism to the 

“original” model to project land-use change, endogenously determining the quantity of 

change.  The second used a “first-come-first-serve” algorithm that sequentially allowed 

each buyer agent to select their highest-value parcel.  The second algorithm more closely 

resembles algorithms commonly used to project land-use change for both regression and 

cellular automaton models, in which cells or parcels are sequentially allocated to their 

highest-valued use.   

We find, as we hypothesized, that on the whole, the market allocation most 

effectively replicates the pattern and quantity of land values and land transitions in the 

original model.  Although not providing a statistically significant match, the market 

model that utilizes buyer level data provides qualitatively similar results and quantities 

that are within reasonable range of the original model.  These results imply that, if data 

are available on the characteristics of market participants, hedonic regression combined 
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with a market allocation mechanism can be used with a reasonable degree of confidence 

for land-use change projection.  When buyer characteristics were not included, the model 

still effectively replicated land-use patterns, but fell short in projecting the relationship 

between buyer budgets and land values. The lesson here is simple—if we lack data on 

important agent-level drivers, our regression estimates will not reflect these drivers, and 

this deficit will spill over into our land-use change projections. Policy analysis should 

thus be cautious in interpreting the resulting projections.   

Results using first-come first-served projections are mixed.  In contrast to the 

results from analytical simulation models, using a spatial-only regression, the value of 

distance is still revealed, as the influences come through to some extent through the 

regression coefficients, which reflect the net effects of both transport cost and preference 

for proximity. However, similar to the WTP_L2_S case, land values don’t reflect agents 

buying power or other sources of agent heterogeneity.  Using the spatial and agent 

characteristic regression, budget values are revealed, as would be expected since these are 

reflected in WTP.  However, land transaction prices do not reflect the value of proximity, 

or the interplay between budget and proximity that is an essential feature of sorting 

through land markets.  The implication of this set of experiments is that first-come first-

served allocation algorithms should be used with caution, especially when policy makers 

are interested in projecting land value patterns.   

There are several directions for future work, which are worth pursuing. Firstly, we 

are in the process of testing two additional analysis methods for a comparison of the 

landscapes.  The first will utilize traditional location-based map comparison algorithms to 

assess each experiment’s ability to replicate the location and quantity of change.  The 



	   20	  

second will use additional regression analysis to test how well each experiment can 

replicate the original regression coefficients associated with the original landscape.  

Second, one could perform additional analysis of the macro metrics. This paper 

has used a variety of methods to analyze differences between experiments.  Most, 

however, are based on graphical and descriptive statistical analysis based on averages.  

Further, we report results from a single set of parameters, which would represent a 

particular market context.  Future work will run the same set of experiments for multiple 

parameters settings.  We can then use alternative methods to explore differences between 

particular parameterizations, as well as look for generalities across parameter sets, 

following  (Sun et al. 2014) 

Third, Parker et al. (2012) identify endogenous relocation as an important element 

in land-market models, and (Huang et al. 2014) review many ABMs that contain this 

feature.  Yet, it is not included in the LUXE model. This omission likely affects final 

patterns of land values, as there should in principle be a fall in the value of closer-in 

properties as infill occurs and open-space amenity values are reduced.  While successor 

models to LUXE contain endogenous relocation, they also contain additional complexity 

such as developer agents. Assessing the robustness of this paper’s conclusions when 

endogenous relocation is added is an important next step.  

Moreover, in order to generalize our results, in future we plan to evaluate two 

additional land-use change projection algorithms. For the first, rather than selecting 

buyers sequentially and letting each choose their highest valued parcel, we will select 

parcel by parcel (using a random allocation algorithm), identify the agent with the highest 

value, and allocate the parcel to that agent.  This projection method will more closely 
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resemble that most commonly used for land-use change projection. We expect this 

method may change projected patterns, as well as the temporal sequence of development 

from city center.  Second, in data-sparse situations, researchers are often only able to 

estimate limited dependent variable models of binary land-use change events.  Using our 

original landscape, we plan to categorize parcels into “converted” or not, and then apply 

logistic regression models to estimate a probability of change, incorporating spatial 

neighborhood relationships.  Then, Monte-Carlo methods (per Plantinga and Lewis, 

(2014)) will be used to project land-use change. This analysis will provide additional 

insight on the potential effectiveness of using regression models for projecting land-use 

change.   

Finally, our methods could be applied to a real-world landscape, in order to 

compare the relative performance of each regression methods and projection algorithm, if 

needed data were available.  In principle, the researchers would need data on both buyer 

and seller characteristics, as well as spatial attributes, property characteristics, and 

transaction values.  Our long-run research goal is to develop such a model, provided we 

are able to obtain the needed data.   
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