Centre for Transport Studies S тоскноьм

How "wide" are the "wider economic impacts"? On the overlap between standard CBA and agglomeration benefits

Jonas Eliasson Professor Transport Systems Analysis, KTH Royal Institute of Technology

Economic effects may fall outside standard CBA

- Labour productivity tends to increase with accessibility
 - And hence with city size
 - Call this "agglomeration effect"
 - Regional economics is getting better at quantifying this
- Standard transport CBA captures accessibility benefits through the consumer surplus
- External agglomeration effects or income taxation => economic benefits outside CBA
 - "Wider economic impacts"
- The overlap problem:
- Assuming that total economic benefits can be calculated how much of them should be added to standard CBA?

Focus: Increasing workers' accessibility to jobs

Neglect local monopolies etc.

vti

Summary of the paper

- The size of the overlap will depend on what micro-mechanisms generating agglomeration effects
 - Matching or spillovers (in wide sense)
- It's difficult or impossible to distinguish contributions from various micro-mechanisms to agglomeration effects
- Hence, the overlap problem is (probably) impossible to solve:
- We can't know how much of economic effects should be added to standard CBA
 - UK practice is wrong
 - Swedish practice is also wrong

Outline

- Two versions of simple two-zone city
- The two city versions are essentially indistinguishable
 - Same elasticities of travel time, travel cost etc.
 - Same relationship accessibility => total wages (=economic output)
 - Standard CBA results of accessibility improvements are identical
- In version 1, all benefits are captured by standard CBA
- In version 2, large benefits fall outside of standard CBA
- "Micro"-information is needed to distinguish the two versions
- Reality is a mix of the two versions
 - And the "mix" is likely different across cities and situations

vti

Choose where to work by comparing $u^*(w_0, 0, 0)$ with $u^*(w, t, c) + D$:

$$u^{*}(w, t, c) = \max_{W} u(x, L)$$

such that
$$c + x \le wW + Y \text{ (budget constraint)}$$

$$L + W + t \le T \text{ (time constraint)}$$

Wages equal to productivity w and D are heterogeneous across workers Distribution of wage rate offers $f(w;N_D)$ depends on number of downtown workers

Three sources of agglomeration effects (or two)

Decreased travel times =>

- Commuters work more hours => higher total production
 - A.E. due to increased labour supply
- More workers commute => higher average productivity
 - A.E. due to matching effect
- General increase in downtown wages
 - A.E. due to spillover effect
- Hence, better accessibility => higher average productivity

Two versions

- 1: No spillovers
 - A.E. are caused only by matching (+ working hours)
- 2: No heterogeneity in wage rates
 - A.E. are caused only by local spillovers (+ working hours)
 - *D* heterogeneity causes some workers to commute, some not
 - (could interpret D as space heterogeneity instead)
- Reality is continuous, not two zones...
- Hence we can't divide workers neatly into "commuters" and "suburbians", and can only observe average wages, commuting distances etc.
- Here, the modeler can't observe "commuters" and "suburbians" separately

 only aggregate numbers (average wage, VMT etc)

vti 📕 WSP sweco

Trafik

Comparison CBA – exact benefits (version 1)

$$TB = \int_{\widehat{w'}}^{\infty} \frac{1}{\lambda} u^*(w, t - dt, c) f(w) dw - \int_{\widehat{w}}^{\infty} \frac{1}{\lambda} u^*(w, t, c) f(w) dw =$$
$$\int_{\widehat{w'}}^{\infty} w dt f(w) dw + \int_{\widehat{w'}}^{\widehat{w}} \frac{1}{\lambda} u^*(w, t - dt, c) f(w) dw = N_D * \overline{w} dt + \frac{1}{2} dN * \widehat{w} dt$$

 $TB_{CBA} = N_D * \overline{w}dt + \frac{1}{2}dN * \overline{w}dt$

- All benefits captured by standard CBA
- ... but slight approximation in the value of time savings

Version 2

Comparison CBA – exact benefits (version 2)

$$TB = \int_{\widehat{D}'}^{\infty} \frac{1}{\lambda} u^*(w', t - dt, c) f(w) dw - \int_{\widehat{D}}^{\infty} \frac{1}{\lambda} u^*(w, t, c) f(w) dw =$$
$$= (Wdw + wdt) N_D + \frac{1}{2} dN * \widetilde{w} dt = TB_{CBA} + (WN_D + \frac{1}{2} dN dt) dw$$

$$TB_{CBA} = N_D * \overline{w}dt + \frac{1}{2}dN * \overline{w}dt$$

CBA misses the term with dw – the wage increase for existing commuters

Numerical simulations

- $u(x,L) = 0.5 \log(x) + 0.5 \log(L)$
- *T*=16 hours, *t*=1 hour, *c*=5\$ and *w*₀=5\$/h
- 1: f(w) uniform 5 to 10\$/h
- 2: wage increase elasticity 0.25
- 2. a/D) uniform 27 to 02 (used to collibrate model)

Numerical simulations

• The two versions "behave" in the same way on an aggregate level:

	Model 1	Model 2
Mean wage rate (\$/h)	7.32	5.42
Mean working hours (h)	7.86	7.97
Mean income (\$/day)	57.41	43.12
Elasticity of travel wrt. time	-0.22	-0.23
Elasticity of mean wage rate wrt. accessibility	-0.044	-0.047

• BUT:

Wider economics impacts:		
Benefits outside CBA relative to	-1%	+42%
standard CBA benefits		

Part 2: The slipperiness of the generalized cost

Generalized travel cost

- Sum of travel time, travel costs, trip comfort etc.
- Cornerstone of standard CBA
- ... and of accessibility measures used to calculate agglomeration lacksquare

However...

- The size of agglomeration benefits depends on which *component* of the generalized travel cost that is affected by a transport project.
- A change in generalized travel costs of a given size gives rise to different agglomeration benefits depending on which component of the generalized travel cost that changes
- Hence, impossible to establish a fixed relationship between standard CBA benefits and WEIs
 - Since CBA benefits only depend on change in generalized cost, not its components

Equivalent reductions of GC may give very different effects (model 2)

Reduction of:	Travel time (t)	Travel disutility (γ)	Travel cost (c)
Elasticity of travel	-0.37	-0.37	-0.17
Elasticity of mean wage rate	-0.064	-0.063	-0.061
Wider economics benefits: benefits outside CBA relative to standard CBA benefits	128%	110%	81%
Wider benefits IF tax revenues are included in the CBA	30%	34%	37%

Conclusions

- Difficult (impossible??) to know the "overlap" between standard CBA and total economic benefits
- Standard CBA may capture more of benefits than is usually assumed
 - Venables, Graham, UK...
- Important to add change in tax revenues
- Generalized cost is too coarse a measure when studying economic effects of changed accessibility

