

CITY LAND USE & RENT DYNAMICS WITH LOCATION EXTERNALITIES & ZONING REGULATIONS

Wenjia (Kevin) Zhang, PhD Candidate in City Planning Kara Kockelman, Professor of Transportation Engineering

THE UNIVERSITY OF TEXAS AT AUSTIN

LAND USE MODELS (LUMs)

Theoretical Urban Economic Models

• Monocentric & non-monocentric models

Agent-based LUMs

- Fine resolution of space & actors, with transitional dynamics
- Lack many market mechanisms
- Recent Development: adding competitive bidding & market-clearing process (Parker & Filatova 2008, Magliocca et al. 2009, Zhou & Kockelman 2011)

Applied Spatial Equilibrium Model (SEMs)

- Explicit representation of land markets
- Lack sufficient spatial resolution, heterogeneity, & dynamics
- Recent Developments: multiple market interactions & real estate development (Anas &Liu 2007), demographic dynamics (Anas 2014a&b), static location externalities (Martínez&Donoso 2001)

THE UNIVERSITY OF TEXAS AT AUSTIN

RESEARCH OBJECTIVES

To develop a **zone-based SEM** enabling **more dynamics** (by extending **Anas** & Liu's (2007) **RELU model** :

- Demographic changes over time: location & land use preferences vary across household groups
- Spatial dynamics (& dynamic location externalities): "a change over time at one location is dependent on the state or changes in the state at other locations" (Irwin 2010)
 - For **households**: their neighborhood's **land use diversity** (e.g., the degree of mixture & job-housing balance)
 - For **firms**: **production externalities** emerging from **innovation diffusion**
- Transitional costs & constraints
 - Residential relocation costs plus costs & constraints (due to zoning regulations) on building stock conversions

THE UNIVERSITY OF TEXAS AT AUSTIN

OBJECTIVES (2)

Analyze effects of demographic shifts, different land-use preferences, & low-density zoning regulations on evolution of land use, housing demand, rents.

	Late Period T-1	Early Pe	riod T		Late	e Period T	
Land Use	New construction and demolition in T - l are finished. The stock changes of different land use, ΔS_{ik}^{T} are endogenously determined.	Land use estimated $S_{ik}^{T} = S_{ik}^{T}$	$mix_{*}D_{i}^{T}, is$ by new $-^{1} + \Delta S_{ik}^{T}$	Relying on new households cho new alternative Developers beg constructions at demolitions	$\sum_{i=1}^{T} D_{i}^{T}$, ose d_{i} $(i, j, k); T_{i}$ (i, j, k); nd	New evelopment in 1 are finished. ΔS_{ik}^{T+1} are determined.	
Innovation	Production with technology A_{rj}^{T-1}	Technological diffusion leads to $\mathcal{A}_{rj}^{\tau-1}$		Firms make dec on innovation investment and relocation	ision rea	Innovation lization leads to new A_{rj}^{τ}	
Demographics	Population of group f in period $T-1: \mathbb{N}_{f}^{T-1}$	Population of group f in Period			Period $T: \mathbb{N}_{f}^{T}$		
		t_T	$t_{T} + 1$	-	I	$t_T + T$	
				1			

Slow Changes: Land Use, Innovation Diffusion, & Demographics

Faster Changes: Residential & Job Mobility, Goods & Assets Price, Rent, Wage, & Transport

Figure 1 Model Dynamics

THE UNIVERSITY OF TEXAS AT AUSTIN

MODEL SPECIFICATION

Households: 9 types, with 3 skill levels (income) & 3 lifecycle stages – each having different housing preference

Assumed shares of 3 lifecylce types in Austin (TxSDC 2014)

- Starter Home (15-34): falling until 2025
- Peak-Demand (35-64): Peak in year 2025
- **Downsizing (>65):** Rising over time

THE UNIVERSITY OF TEXAS AT AUSTIN

Households

Utility Function: Households' **location-choice utility** is not only associated with goods consumption, housing size, & exogenous variations in inter- (or intra-) zonal attractiveness, but also with **zonal diversity features**, including land use mixture & job-housing ratio.

Building Types: Low- & high-density single- & multi- family housing, industrial, & commercial buildings

Moving Costs: Households enjoy perfect foresight within each period *T* & moving costs are only associated with housing rents.

THE UNIVERSITY OF TEXAS AT AUSTIN

Firms

Maximize each period's **profits** by deciding **inputs of capital**, **labor**, & **floor space**, **intermediate inputs** (from other firms), & **innovation investment**, subject to output demand X_{rj}^T in period *T*:

$$X_{rj}^{T} = \left(A_{rj}^{T}\right)^{\gamma} F\left(K_{rj}^{T}, L_{hs|rj}^{T}, B_{k|rj}^{T}, Y_{rj}^{T}\right)$$

 A_{rj}^{T} = technology level of type-*r* firm in zone *j*

= a function of access to new technologies in other locations (diffusion since the previous period), probability of innovation, & inputs of innovation investment.

THE UNIVERSITY OF TEXAS AT AUSTIN

Developers

For construction decisions, we assume perfectly competitive markets, so **expected profits** of investors (after collecting rents on vacant land at start of year & paying property taxes) equal zero, as follows:

(15)
$$E\{\max[\pi_{i00}(Y_{i0}^{T}), \pi_{i0k}(Y_{ik}^{T}, p_{\mathcal{R}+1}^{T}, \mathbb{C}_{i0k}^{T}); k = 1, \dots, n_{k} \& k \in \mathbb{Z}_{i}]\} + R_{i0}^{T} - \frac{1}{1+\rho}\tau_{i0}Y_{i0}^{T} = 0$$

$$(16) E\{\max[\pi_{ikk}(Y_{ik}^{T}, \mathbb{C}_{ikk}^{T}), \pi_{ik0}(Y_{i0}^{T}, p_{\mathcal{R}+2}^{T}, \mathbb{C}_{ik0}^{T})]\} + E\{\max[r_{v}(\mathbb{V}_{ik}^{T}), r_{o}(R_{ik}^{T}, \mathbb{O}_{ik}^{T})]\} - \frac{1}{1+\rho}\tau_{i0}Y_{ik}^{T} = 0$$

Note: \mathbb{Z}_i = set of possible building types that are allowed in the modeled zone *i* under **zoning regulations**

HE UNIVERSITY OF TEXAS AT AUSTIN

Market Clearing within Each Period

Product Markets: Supply = Demand

$$\begin{split} \sum_{r'=1,\dots,\mathcal{R}+2} \sum_{i'=1,\dots,N_{\pi}} Y_{ri\to r'i'}^T + \mathbb{E}_{ri}^T &= X_{ri'}^T \forall r=1,\dots,\mathcal{R}-1\\ \sum_{\forall hs} \mathbb{N}_{hs} \sum_{\forall i',j,k} P_{i'jk|hs}^T C_{i|i'jk}^T + \mathbb{E}_{\mathcal{R}i}^T &= X_{\mathcal{R}i}^T \end{split}$$

Real Estate (Land Use) Markets

$$(23) \quad \sum_{\forall hs} \mathbb{N}_{hs}^{T} \sum_{\forall j} P_{ijk|hs}^{T} b_{ijk|hs}^{T} = S_{ik}^{T} \frac{r_{o}(R_{ik}^{T}, \mathbb{O}_{ik}^{T})}{r_{v}(\mathbb{V}_{ik}^{T}) + r_{o}(R_{ik}^{T}, \mathbb{O}_{ik}^{T})}, k = 1, \dots, n_{r}$$

$$(24) \quad \sum_{\forall hs} B_{k|ri}^{T} = S_{ik}^{T} \frac{r_{o}(R_{ik}^{T}, \mathbb{O}_{ik}^{T})}{r_{v}(\mathbb{V}_{ik}^{T}) + r_{o}(R_{ik}^{T}, \mathbb{O}_{ik}^{T})}, k = n_{r} + 1, \dots, n_{k}$$

Labor Markets

(25)
$$\sum_{r=1}^{\mathcal{R}+2} L_{hs|rj}^{T} = \mathbb{N}_{hs}^{T} \sum_{\forall i,k} H_{ijf}^{T} P_{ijk|f}^{T}$$

THE UNIVERSITY OF TEXAS AT AUSTIN

DYNAMICS

Building stocks change **evolve toward equilibrium** & do not reach equilibrium levels within each period.

$$S_{ik}^{T+1} = \begin{cases} S_{i0}^{T}Q_{i00} + X_{\mathcal{R}+2}^{T}, & if \ k = 0\\ S_{ik}^{T} - S_{ik}^{T}Q_{ik0}, & if \ k \notin \mathbb{Z}_{i}\\ S_{ik}^{T} - S_{ik}^{T}Q_{ik0} + m_{ik}S_{i0}^{T}Q_{i0k}, if \ k \in \mathbb{Z}_{i} \end{cases}$$

Spatial dynamics mean evolving location externalities:

- Zonal diversity in period T+1 differs from that in period T, due to the redistribution of firms & households, plus the construction & demolition of buildings.
- Locational technology levels (A^{T+1}_{rj}), also evolve due to technology diffusion (across periods) & innovation investment.

THE UNIVERSITY OF TEXAS AT AUSTIN

SIMULATIONS OF AUSTIN, TX

- 38 MLS areas
- Base period: 2010
- 2015-2035 projections

Parameter Calibration

- Using Austin's land use, travel diary, real estate, & Census data
- Some parameters rely on existing literature (Anas & Rhee 2006, Zhou & Kockelman 2011, Desmet & Rossi-Hansberg 2014).

Figure 2 38 MLS areas in Austin, Texas

THE UNIVERSITY OF TEXAS AT AUSTIN

FOUR POLICY SCENARIOS

Scenario 1 (S1): Demographic changes only

Scenario 2 (S2): S1 + evolving Location externalities on the household side (i.e., neighborhood diversity changes affect household relocation choices)

Scenario 3 (S3): S1 + Low-density zoning regulation (excluding high-density residential development) in outer suburbs (10 zones).

Scenario 4 (S4): S2 + Low-density zoning regulations in outer suburbs.

THE UNIVERSITY OF TEXAS AT AUSTIN

Population Density Dynamics

(c) Household density in S3 (S1 + low-density zoning regulation)

Figure 4 Trends of household density 2015-2035 under three scenarios (S1 vs. S2, S1 vs. S3)

Figure 5 Trends of employment density 2015-2035 under three scenarios (S1 vs. S2, S1 vs. S3)

Land Use Differences between S1 & S2

Rising demand for mixed-use environments may increase both population & employment in the **urban core** & lower them in the suburbs, while **improving land use diversity** in suburban areas at the same time.

S2 vs. S1	Land Use	2015	2020	2025	2030	2035
Urban Core	#Households	45.69%	22.66%	26.73%	23.25%	24.11%
	#Jobs	1.88%	1.32%	1.38%	1.33%	1.43%
	LU Mix	-0.88%	-0.04%	-0.54%	0.26%	-0.31%
	Jobs/Housing	-36.38%	-19.69%	-28.60%	-23.02%	-25.87%
Inner	#Households	-14.87%	-6.61%	-7.70%	-6.56%	-6.80%
Suburbs	#Jobs	-4.32%	-2.19%	-3.30%	-2.99%	-3.32%
	LU Mix	0.15%	0.12%	-0.15%	0.16%	0.06%
	Jobs/Housing	5.98%	0.11%	0.84%	0.24%	0.40%
Outer	#Households	-12.77%	-7.34%	-8.81%	-7.99%	-8.40%
Suburbs	#Jobs	-4.72%	-4.55%	-4.11%	-4.18%	-4.37%
	LU Mix	4.77%	5.84%	5.97%	6.28%	6.36%
Note: %'s are cal	culated as (land use	varriable value in	S2 - value in S1) /	(value in S1)	1 070/	E 700/

Demographic Changes Before vs. After Low-density Zoning

"Zoned-Out" Effects: The low-density zoning regulation appears to encourage population decentralization alongside job centralization, causing citywide job-housing mismatches & urban sprawl.

		2015	2020	2025	2030	2035	
S3 vs. S1							
Urban Core	#Household	0.37%	0.16%	-0.02%	-0.12%	-0.20%	
	#Jobs	7.75%	7.61%	7.48%	7.57%	7.69%	
Inner	#Household	0.28%	0.28%	0.27%	0.22%	0.18%	
Suburbs	#Jobs	-1.53%	-2.58%	-3.18%	-3.36%	-3.49%	
Outer	#Household	-0.64%	-0.49%	-0.34%	-0.20%	-0.09%	
Suburbs	#Jobs	-34.44%	-35.96%	-37.11%	-37.57%	-37.91%	

Note: %'s are calculated as (land use variable value in S2 – value in S1) / (value in S1)

Demographic Changes Before vs. After Low-density Zoning

When real estate market realizes residents' preferences for mixed-use neighborhoods, the **negative sprawling effects** of land use regulation may be **mitigated**.

		2015	2020	2025	2030	2035		
S4 vs. S2								
Urban Core	#Household	2.79%	2.18%	2.24%	2.31%	2.27%		
	#Jobs	1.19%	1.53%	1.69%	1.65%	1.56%		
Inner	#Household	-0.42%	0.20%	0.38%	0.52%	0.59%		
Suburbs	#Jobs	-5.91%	-7.36%	-7.51%	-7.54%	-7.34%		
Outer	#Household	-2.78%	-2.34%	-2.73%	-2.94%	-3.03%		
Suburbs	#Jobs	-0.45%	-0.94%	-2.01%	-1.79%	-1.46%		

Note: %'s are calculated as (land use variable value in S2 – value in S1) / (value in S1)

Changes in Housing Demands

- **S2 vs. S1:** Demand for LDSF housing falls when mixed-use preference is realized in the market, while demand for HDMF homes rises the most.
- **S3 vs. S1:** Effects of low-density zoning regulation seem small at first, but will increase LDSF demand in the long term.

Housing Demand Comparisons	2015	2020	2025	2030	2035			
S2 vs. S1								
Low-Density Single-Family	-6.99%	-4.27%	-4.81%	-4.44%	-4.61%			
High-Density SF	9.39%	5.22%	5.96%	5.23%	5.48%			
Low-Density Multi-Family	3.57%	2.77%	3.38%	3.38%	3.53%			
High-Density MF	25.25%	15.71%	16.66%	15.38%	15.61%			
S3 vs. S1								
Low-Density Single-Family	-0.20%	-0.10%	-0.02%	0.03%	0.07%			
High-Density SF	0.28%	0.20%	0.12%	0.06%	0.01%			
Low-Density Multi-Family	0.19%	0.08%	-0.03%	-0.09%	-0.14%			
Note: %'s are calculated as (land use varriab	0.35% ole value in \$2 - v	value in S1)/ (va	$lue \frac{10}{10}$	-0.27%	-0.36%			

Changes in Housing Rents

- **S2 vs. S1:** Demand for mixed-use neighborhoods significantly raises LDMF & HDSF housing rents.
- **S3 vs. S1:** Supply constraint on high-density development will raise HD housing rents, especially in the long term.

Housing Types	2015	2020	2025	2030	2035				
S2 vs. S1									
Low-Density Single-Family	-1.31%	5.51%	3.07%	4.89%	3.92%				
High-Density SF	16.97%	27.30%	26.22%	28.76%	27.79%				
Low-Density Multi-Family	76.04%	82.70%	74.64%	77.68%	75.61%				
High-Density MF	-2.41%	8.91%	4.93%	5.87%	4.87%				
S3 vs. S1									
Low-Density Single-Family	-3.01%	-0.24%	1.94%	2.58%	3.13%				
High-Density SF	19.61%	22.87%	25.08%	25.42%	26.21%				
Low-Density Multi-Family	-3.75%	0.34%	4.64%	6.72%	7.21%				
Note: %'s are calculated as (land use varr	iable- 4 a 2.6% S2	- vatile 71986) / (1	value On 2:4%	-0.35%	0.02%				

CONCLUSION

Developed a **dynamic spatial general equilibrium model** with exogenous (demographic) & endogenous (spatial) features.

Policy implications from 4 policy scenarios:

- **Rising demand for mixed-use neighborhoods** may improve land use diversity in suburban areas & lower demand for low-density single-family housing across the city/region.
- Low-density zoning regulation in Austin's outer suburbs may lead to citywide job-housing mismatches & population sprawl, while raising rents on high-density housing & LDSF demand, especially in long term.
- When existing low-density zoning regulations cannot be changed in the near term, the promotion of mixed-use development may increase households' mixed-use preferences & mitigate sprawl forces.

THE UNIVERSITY OF TEXAS AT AUSTIN

LIMITATIONS

- Effects of transition costs (e.g., residential moving costs) & innovation diffusion should be included in further simulation analyses.
- More sensitivity analyses will also support land use policy analysis & regional decision-making.
- Better calibration of parameters wanted.
- **Transportation system** is exogenous here.
- Need for welfare analysis, with more policies related to zoning changes, road tolls, & subsidies for alternative development.

THE UNIVERSITY OF TEXAS AT AUSTIN

Thank you for your kind attention. Questions & Suggestions?

Papers available at www.caee.utexas.edu/prof/kockelman

THE UNIVERSITY OF TEXAS AT AUSTIN