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Abstract 
 

Service level attributes like travel time variability (TTV) and passenger crowding are 
attracting attention among policy makers, practitioners and transport modellers, due to 
the increasing awareness that users pose a high value on these level-of-service variables. 
In this paper, we analyse the travel time variability and modal reliability of cars and public 
transport trips. We characterize travel time variability in each stage of a trip by public 
transport (access, waiting, in-vehicle bus, in-vehicle metro and transfer), and estimate the 
effect of each stage on the variability of travel time for complete door-to-door trips. We 
use data from travel time surveys collected in Santiago, in which surveyors are asked to 
perform predetermined trips and record access, waiting, in-vehicle and transfer times, 
several different days between 2007 and 2011.  Using the standard deviation (SD) on 
minutes per kilometre to characterize TTV on motorised modes, we find a stronger 
relationship between SD and mean travel time for cars and bus than for metro, and by 
fitting linear relationships between SD and mean travel time, we obtain that bus presents 
the most variable travel time, followed by car and metro. A multivariate regression for the 
variability of total (door-to-door) public transport travel time shows that bus waiting and 
in-vehicle time are highly significant in explaining total TTV, whereas walking and metro 
travel time do not have a significant effect. Implications for policy making are discussed. 
 
Keywords: travel time variability, modal reliability, waiting, walking, bus, metro, 
congestion. 
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1. Introduction: the relevance of characterizing travel time variability 
 
Travel time variability reflects the degree of variation in travel time of a trip repeated in 
similar conditions over several days. Travel time variability is a key factor that travellers 
and shippers take into account when making basic travel decisions such as mode, route 
and departure time. Studies that attempt to quantify how much people value reductions 
of travel time variability abound (Jackson and Jucker, 1982; Senna, 1994; Noland and 
Small, 1995; Bates et al., 2001; Lam and Small, 2001; Li et al., 2010, among many others). 
Basically, a reduction in travel time variability allows for a more predictable travel time, 
and therefore better activity scheduling decisions for all users of a transport network, 
including car drivers, public transport riders, cyclists and cargo operators. 
 
In order to monetise the value of reductions in travel time variability, two modelling 
approaches are usually put forward: the scheduling model and the mean-variance model.  
Whereas the scheduling model assumes that being early or late at a destination is a 
source of disutility for travellers, the mean-variance approach suggests that travel time 
variability is a cost by itself, no matter if travellers arrive early or late (see Carrion and 
Levinson, 2012 for a review). Fosgerau and Karlström (2010) show that the scheduling and 
mean-variance models are equivalent under certain conditions, however, empirical 
evidence suggests that the value of travel time variability reductions from a scheduling 
model may be smaller than that of a mean-variance model (Börjesson et al., 2012), 
possibly because uncertainty is considered a source of disutility as such, regardless if the 
final outcome is arriving early, on-time or late at a destination.  
 
Even though we have plenty of evidence on how much travel time variability matters to 
travellers, there is no agreement on which is the best way to measure it. Several 
constructs have been used to analyse the level of variability in travel times for different 
modes and travel conditions, and a number of studies are devoted to compare different 
measures of network reliability or travel time variability, either for particular roads or 
modes (e.g., Lomax et al., 2003; van Lint et al., 2008; Cambridge Systematics et al., 2013). 
The measures of TTV proposed and analysed in the literature can be roughly classified in 
two groups (Pu, 2011):  (i) performance reliability measures, introduced to quantify the 
performance of transport systems, and (ii) measures to estimate travellers responses to 
unreliability, usually to improve travel behaviour models (such as the standard deviation 
of travel time and the probability of arriving early or late at a destination, for introduction 
in mean-variance or scheduling models, respectively). A summary of travel time reliability 
measures proposed in the literature is presented in Table 1. The advantages of the 
standard deviation of travel time are its simplicity and the fact that it can be readily 
introduced in a mean-variance model to analyse users’ responses to travel time variability, 
which makes the standard deviation an attractive measure to characterize the reliability of 
travel times and travel modes. 
 
 
 



Table 1: Selected measures of travel time variability on different studies 

TTV measure Source 

Standard deviation of travel time May et al.(1989) 
Eliasson (2007) 
Mahmassani et al. (2012) 
Peer et al. (2012) 
Tirachini et al. (2014) 

Difference between 90th and 10th percentile of 
travel time  

Eliasson (2007) 
Tu et al. (2007)  
van Lint and van Zuylen (2005) 

Coefficient of variation  
 

May et al.(1989) 
Eliasson (2006) 

Standard deviation of delay  
(delay: difference between actual travel time 
and free flow travel time) 

Mott MacDonald (2008b; 2008a) 

Variance of delay Mott MacDonald (2008b; 2008a) 

Travel time index (TTI) 
(Ratio of actual travel time to free-flow travel 
time) 

Cambridge Systematics et al. 
(2013) 

80% percentile TTI Cambridge Systematics et al. 
(2013) 

Buffer time index 
(Difference between 95th percentile travel time 
per km  and average travel time per km, divided 
by travel time per km) 

Lomax et al. (2003) 
van Lint et al. (2008) 
 

Misery index  
(Average of the highest 5% or 20% of travel 
times, divided by free-flow travel time) 

van Lint et al. (2008) 
Kim et al. (2013) 

Planning time index  
(The 95th percentile travel time divided by free-
flow travel time) 

Lomax et al. (2003) 
Kim et al. (2013) 

 
 
Given the relevance of travel time reliability for travellers satisfaction and network 
performance assessment, it is useful to have a relationship between a TTV measure and a 
measure of mean travel times, because the latter is easier to estimate either with 
empirical, analytic or simulation methods. Several authors have estimated functions to 
link average travel time with a measure of travel time variability, usually the standard 
deviation, as done for cars by May et al.(1989), Mahmassani et al. (2012), Peer et al. 
(2012), Cambridge Systematics et al. (2013) and Tirachini et al. (2014), and for buses by 
Mazloumi et al. (2010) and Moghaddam et al. (2011). 
 



The analysis of travel time variability by public transport is more complicated than that of 
car traffic, because of, at least, three factors (Tirachini et al., 2014): (i) buses and trains 
stop for the boarding and alighting of passengers, a process that involves other sources of 
variability (speed and number of passengers boarding and alighting, choice of fare 
payment method, number of buses stopping), (ii) unreliable travel times have a negative 
effect on waiting times at bus stops and train stations, and (iii) the uncertainty of travel 
times in public transport also induces a cost on service providers, who may introduce 
larger recovery times in the schedule if travel times are less reliable. Ad-hoc measures 
proposed to analyse the reliability of a public transport service go beyond the standard 
deviation of travel time to include constructs such as the probability of on-time 
performance, the travel time ratio (observed travel time/scheduled travel time) and 
several measures of the variability of headways, which increases waiting times (Abkowitz 
and Engelstein, 1983; Strathman and Hopper, 1993; Strathman et al., 1999; El-Geneidy et 
al., 2008). 
 
In this article we aim at characterising the reliability of both cars and public transport trips 
using data from Santiago de Chile. We count with two databases of repeated observations 
of trips in different areas of the city, one database for cars and another one for 
multimodal public transport trips (includes both buses and metro). The contributions of 
this article to the literature on travel time variability are two-fold. First, we compare the 
travel time variability of three modes using a single distance-free measure, which allows 
us to compare results on in-vehicle time by car, bus and metro. Second, in the case of 
public transport trips, our database encompasses door-to-door trips repeated over several 
days, therefore we can go beyond previous public transport studies that focus on travel 
time or headway reliability, to analyse each stage of a trip separately (walking, waiting, in-
vehicle bus, in-vehicle metro and transfer time), and how each of these stages influences 
the total (door-to-door) travel time variability. In particular, we are able to estimate which 
stages, and to what extent, are statistically significant in explaining total travel time 
variability, and which stages are not statistically significant. To the best of our knowledge, 
this is the first study that includes walking and waiting to understand total travel time 
variability in public transport. Policy implications are discussed. 
 
The rest of the article is organised as follows: Section 2 describes the data used in this 
article. In Section 3 we analyse the probability distributions of travel times in car and 
multimodal public transport trips. In Section 4, the variability of travel time is analysed per 
mode and trip stage (in the case of public transport). Section 5 presents the study of door-
to-door travel time variability in public transport. Section 6 concludes. 
 
 
 
 
 
 
 



2. Data description 
 
Two datasets are used in order to investigate the characteristics of travel time variability 
in Santiago. The first is a database of travel times by car provided by UOCT (Unidad 
Operativa de Control de Tránsito), the public agency that controls traffic signals for the 
Santiago Metropolitan Area. These data record travel time by car for 25 different road 
stretches, on different time periods. Trips recorded in the morning (8:00-9:00) and 
afternoon (18:00-20:00) peak periods were obtained. Between 3 and 6 repetitions of the 
same trip are recorded in the morning peak, and between 6 and 10 are recorded in the 
afternoon. Data is recorded one working day every three months, and the total database 
contains 2,616 travel time measurements between 2010 and 2014. A floating car is used 
to measure travel time. 
 
The second database comes from a large project on the observation of travel times in 
multimodal public transport trips in Santiago, that spans from 2007 and 2012. The surveys 
are requested by the Metropolitan Public Transport Agency (DPTM, Directorio de 
Transporte Público Metropolitano) and carried out by a private consultant, who hires 
surveyors to do specific trips day after day, and record the time taken in each stage of a 
trip. The main difference with other databases used to analyse public transport reliability, 
is that ours record trips door-to door, i.e., including access, waiting, in-vehicle time (by bus 
and/or metro), transfer and egress time, for 66 different origin-destination pairs in the 
metropolitan area.  Trips were made in 1, 2, 3 and 4 vehicles in peak and off-peak periods. 
We have a total of 35,340 observations for different stages of trips. Table 1 summarises 
relevant information about the two databases. Peak periods differ between the databases 
as periods were defined by the authorities in charge of each survey. 
 

Variable Car database Public transport database 

Observation period March 2010 - June 2014 May 2007 - December 2012 

Time periods Morning peak:  08:00 - 09:00 
Afternoon peak:  18:00 - 20:00 

Morning peak:  6:30 - 9:30 
Off-peak:  9:30 - 12:30 
Afternoon:  14:30 - 16:30 
Afternoon peak:  17:30 - 20:30 
Night: 20:30 - 01:00 

Total number of 
observations 

2,616 O-D pairs: 66 
Trips stages: 35,340 

Average speed (km/h) Car morning peak: 24.1 
Car afternoon peak: 20.7 

Bus morning peak: 19.5 
Bus off-peak: 21.6 
Metro morning peak: 29.7 
Metro off-peak: 32.3 

Average trip length 
(km) 

2.4 Bus: 5.6 
Metro: 9.7 

Table 1: Description travel time databases 



3. Probability distribution of travel times 
 
Travel time variability (TTV) is the result of random variations in travel time caused by a 
number of variables whose impact cannot be anticipated by travellers (Tu, 2008). 
Amongst the most common causes of TTV we can mention temporal demand differences 
(peak/off-peak, weekday/weekend), driving attitude, weather, roadwork, accidents, 
special events, network effects (effect of traffic in one road over travel times on adjacent 
roads) and differences in traffic signal programming and other traffic control devices (Tu, 
2008; Cambridge Systematics et al., 2013; Kim et al., 2013). These factors make that travel 
time vary both within one day and day-to-day. By recording repeated observations of a 
trip on the same route at the same time (or time period) every working day, it is possible 
to analyse day-to-day travel time variability, which is what users take into account when 
making commuting decisions.  
 
In this section, we estimate probability distributions for travel time by car, bus and metro. 
In general, knowing if any parametric distribution is reasonable accurate to model travel 
time observations in a particular route is an useful tool to perform analytical comparisons 
between different reliability measures (standard deviation, buffer index, planning time 
index and others), as done by Pu (2011) assuming a lognormal distribution.  
 
Some articles have estimated continuous probability distributions for car traffic, in cities 
like San Antonio (Rakha et al., 2010), Adelaide (Taylor and Susilawati, 2012; Susilawati et 
al., 2013), Paris (Aaron et al., 2014), and Stockholm (Eliasson, 2007), among others; 
whereas for public transport we can mention the studies of  selected bus routes in 
Melbourne (Mazloumi et al., 2010) and Brisbane (Kieu et al., 2014). Distributions like the 
Lognormal, Gamma, Burr and Weibull are the most commonly proposed to fit travel time 
distributions. An usual finding is that travel time is skewed, with long right tails (van Lint 
and van Zuylen, 2005; Cambridge Systematics et al., 2013; Susilawati et al., 2013), 
therefore asymmetrical distributions in theory are more suitable than symmetrical 
distributions to model travel time variability, however symmetrical distributions due exist 
as well (Eliasson, 2007). Even bimodality of the travel time distribution has been found in 
specific cases (Susilawati et al., 2013).  
 
We identified probability distributions that fit in-vehicle travel times of the three 
motorized modes in our study: car, bus and metro, based on the tests for goodness-of-fit 
Chi-square and Kolmogorov-Smirnov. See Appendix A for a brief description of both tests. 
The software Statgraphics was used for this task.  
 
For travelling by car, results show that a lognormal distribution fit observed travel times 
for 80% of routes. The lognormal distribution has been previously proposed in the 
literature (e.g., Rakha et al., 2010; Susilawati et al., 2010; Pu, 2011). On the other hand for 
bus and metro, the loglogistic distribution fits well several observed travel times, which 
does not seem to have been found in the extant literature (for buses, Kieu et al., 2014 also 
propose a lognormal distribution). Loglogistic and lognormal distributions are quite similar 



in shape, and are among the set of distributions used for reliability analysis for the lifetime 
of components and systems1. In the following figures we show examples of probability 
distributions for travel times by car, metro and bus. These findings confirm that the travel 
time distribution is usually but not always rightly skewed, as a symmetrical (normal) 
distribution is found as a good fit in 2 and 8 routes for bus and car, respectively. 
 

 

Figure 1: Histogram and lognormal distribution for car travel time (minutes), 
Eliodoro Yáñez Avenue, between Américo Vespucio and Los Leones 

 
 

Lognormal 

mean = 10,4211 

standard deviation = 2,53113 

Log scale: mean = 2,31517 

Log scale: std. dev. = 0,239414 

Chi-Squared test: P-Value = 0,78354 

Kolmogorov-Smirnov Test: P-Value = 0,976698 

Table 2: Lognormal parameters for car travel time (minutes), 
Eliodoro Yáñez Avenue, between Américo Vespucio and Los Leones 

 

 

                                                             
1
 Wolfram Documentation Center, 

http://reference.wolfram.com/language/guide/DistributionsUsedInReliabilityAnalysis.html, accessed 22 Dec 

2014 
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Figure 2: Histogram and loglogistic distribution for metro in-vehicle time (minutes)  
Trip between stations Plaza de Armas and Vicente Valdés 

 

Loglogistic 

median = 23,3787 

shape = 0,0498192 

Chi-Squared test: P-Value = 0,568847 

Kolmogorov-Smirnov Test: P-Value = 0,818637 

Table 3: Loglogistic parameters for metro in-vehicle time (minutes)  
Trip between stations Plaza de Armas and Vicente Valdés 

 
 

 

Figure 3: Histogram and loglogistic distribution for bus in-vehicle time (minutes),  
Trip made in bus service 105, from bus stop Cardenal Raúl Silva H. and Pegaso, to bus 

stop N°1 Metro San Alberto Hurtado 
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Loglogistic 

median = 23,1796 

shape = 0,091907 

Chi-Squared test: P-Value = 0,966644 

Kolmogorov-Smirnov Test: P-Value = 0,913392 

Table 1: Loglogistic parameters for bus in-vehicle time (minutes),  
Trip made in bus service 105, from bus stop Cardenal Raúl Silva H. and Pegaso, to bus 

stop N°1 Metro San Alberto Hurtado 
 
 
4. Travel time variability: modal differences 
 
4.1 The identification of incidents 
 
Traffic congestion as a source of travel time variability should be analysed by 
distinguishing recurrent congestion (e.g., the day-to-day increase in traffic in the morning 
peak in working days) and non-recurrent congestion, caused by incidents like accidents, 
extreme weather and others that may cause very long travel times, which are of rare 
occurrence (Tu, 2008). The infrequent existence of very long travel times make the travel 
time distribution to be usually skewed (van Lint et al., 2008). 
 
The influence of incidents is discernible in our data. Figure 4 shows the travel time 
observations of three different car trips. Figure 4.a depicts travel time in route 10 for 113 
observations of morning peak trips (8:00-9:00), where sets of bars (either red or blue) 
represent observations on the same day. In Figure 4.a, there are no clear outsiders and all 
randomness seems to stem from recurrent congestion. On the other hand, Figure 4.b 
shows the travel time observations for route 9 in the morning peak period; four 
observations (green bars) stand out well above the others. These are trips likely taking 
place during an incident that enlarged travel time in a way that can hardly be explained by 
recurrent congestion. Three incidents seem to have occurred but four trips are affected. 
The identification of incidents is made using a test for outliers (a value around three 
standard deviations from the mean is candidate to be an outlier). 
 



 
(a) Travel time Route 10, morning peak 

 

 
(b) Travel time Route 9, morning peak 



 
(c) Travel time Route 2, afternoon peak 

Figure 4: Travel time variability, cases with and without incidents 
 
Finally, Figure 4.c shows another interesting case, in which two observations are identified 
as outliers (green bars), however, by looking at the two trips that follow (purple bars), it 
seems that the travel time of both trips is also larger than usual, owing to an incident that 
happened before (green bars) that had negative effects in the following minutes. Then, 
even though the purple bars might not be statistical outliers, they are considered as 
incidents as well. All in all,  from a total of 2,616 car travel time observations from 25 
routes, only 13 trips were detected as outliers, an another 4 were assumed as incidents as 
well, two of which are seen in Figure 4.c. Then, the total number of trips affected by 
incidents, detected with this procedure, is 17, that is 0.6% of the total. The effect of 
including or removing incidents on the characterisation of travel time variability is 
analysed in the next section. 
 
 
4.2 Travel time variability of different modes and stages of a public transport trip 
 
4.2.1 Car travel time 
 
First, we analyse car trips. Figure 5 depicts the relationship between the mean and 
standard deviation of travel time in minutes per kilometre. The effect of incidents is 
illustrated when comparing both plots: incidents increase the variability of a few 
observations as shown in Figure 5.a. Removing incidents (0.6% of observations) produces 
the plot of Figure 5.b. Both scatterplots can be regressed with linear relationships. 
Interestingly, removing incidents has a great impact on the goodness-of-fit of the 
relationships found, but not on the slope of the linear relationship which reduces from 



0.32 to 0.30 when removing incidents. Therefore, our data suggest that an increase of 1 
minute per kilometre in mean travel time, in average is associated with an increase 
between 18 and 19 seconds, which is the same result found in Sydney by Tirachini et al. 
(2014), with a regression using data from 423 roads (slope equal to 0.32). A linear 
relationship between SD and mean travel times is a very simple way to apply a mean-
variance model using only estimations of mean travel time, provided that the reliability 
ratio (ratio between the parameter of the mean travel time and the parameter of the SD 
of travel time) is also known. The evidence of Sydney and Santiago points to a slope of 0.3 
for the relationship SD-mean when the unit is min/km; data from other cities would be 
necessary to assess the generalizability of this result.  
 

 
(a) All data                                             (b) Removing incidents 

Figure 5: Relationship between SD and mean travel time, cars 
 
 
Moving to public transport, we characterise time variability for each stage in the next 
sections. 
 
4.2.2 Walking time (access and transfers) 
 
The characterisation of walking time variability is missing in previous studies on public 
transport reliability, even though walking is the predominant way to access bus stops and 
train stations in cities, and to transfer between vehicles in trips with more than one 
motorized stage. In our dataset, surveyors were required to walk from a given corner to a 
specific bus stop or metro station, and record their walking time over several days. The 
relationship between the mean and variability of time is depicted in Figure 6.a, where a 
positive but heteroscedastic relationship is distinguished, exposing evidence that for 
walking, in average, travel time variability seems to increase with travel distance. The 
tendency is less clear when analysing walking time variability when transferring between 
vehicles, as there are high variability points for both short and long average walking times 
(Figure 6.b). Going beyond average travel time to analyse system variables that influence 
walking time variability (e.g., number of signalised and priority intersections) is a direction 
of further research. 



 
 

 
          (a) Walking to access                                        (b) Walking at transfer 

Figure 6: Relationship between SD and mean walking time 
 
 
4.2.3 Waiting time 
 
Several authors analyse the stability of bus headways (e.g., Strathman et al., 1999; Chen et 
al., 2009; Byon et al., 2011) since it has been shown that headway variability increases 
mean waiting times (Osuna and Newell, 1972), and therefore, strategies like bus holding 
are studied and implemented in both frequency- and schedule- based services, in order to 
maintain intervals as even as possible. Even though the link between headway variability 
and mean travel time has long been established, the extension to understanding waiting 
time variability has not received attention in the literature, chiefly because while bus 
headways are easy to record with automatic vehicle location devices (e.g., GPS devises), 
obtaining repeated observations of actual waiting times for several routes over several 
days, is a more cumbersome task that usually requires field observation and/or video 
recording and processing. We are able to characterise day-to-day variation in waiting 
times thanks to the repeated surveys made to estimate travel times of different trips by 
public transport in Santiago.  
 
 



 
 (a) Metro, all observations                    (b) Metro, mean below 3 minutes 

 

 
                  (c) Buses                                             (d) waiting at transfer 
Figure 7: Relationship between SD and mean waiting time, bus and metro 

 
For the Metro trips surveyed, most mean waiting times are below 3 minutes (75 out of 77 
metro trip stages). When analysing all observations, Figure 7.a shows that the standard 
deviation of waiting time is increasing for trips whose mean waiting time is below 3 
minutes, while for the two observations of mean waiting time over 3 minutes, SD is stable 
at around 3.5 minutes. This may point towards a concave relationship between mean and 
SD of waiting times (like the logarithmic regression in Figure 7.a), but the fact that there 
are too few observations with mean waiting times over 3 minutes, prevents us to 
conclude such result with certainty. On the other hand, by focusing on the 75 cases with 
mean waiting time bellow 3 minutes, Figure 7.b is obtained, in which a slope of 1.09 is 
obtained for the linear relationship between the mean and the SD of waiting times, value 
that is similar to the slope 1.02 obtained for buses (Figure 7.c). Finally, Figure 7.d presents 
the analysis of waiting time variability when transferring between buses, or between bus 
and metro. A fairly linear relationship is also found, with a slope slightly lower than the 
case of waiting time at first boarding (0.88 vs 1.02-1.08). Give that transfers between 
vehicles in Santiago are not coordinated, it is not expected to observe significant different 
between both regressions (Figures 7.c and 7.d). 
 
 



4.2.4 In-vehicle time, bus and metro 
 

Finally, we study the travel time variability for in-vehicle time in public transport trips. As 
for the case of cars, we normalise travel times by distance (min/km), in order to grasp the 
relationship between travel time and congestion. 
 
Figure 8.a depicts the standard deviation of travel time by metro. The data supports a 
positive relationship between mean and SD of travel time, although data shows high 
dispersion, meaning that travel time variability is weakly related to mean travel time, in 
apparent opposition to the relationships found in the other two modes according to 
Figures 5 and 8.c. However, it must be noted that mean in-vehicle time by metro is 
between 1.4 and 3.0 min/km in Figure 8.a, much lower than the range found for cars 
(between 1.6 and 6.0 min/km in Figure 5) and buses (between 1.5 and 8.2 in Figure 8.c). 
Therefore, in order to make a proper comparison, it would be useful to reduce the 
analysis of cars and buses to the range of speed at which metro operates, which is over 20 
km/h (less than 3 min/km in Figure 8), as done later in this section. 
 

 
                      (a) Metro                                                               (b) Bus 

 
 

(c) Bus, mean bellow 9 min/km 
Figure 8: Relationship between SD and mean in-vehicle time, bus and metro 

 
 
The bus travel time plot (Figure 8.b) shows some interesting issues. First, 207 out of 209 
trip stages have a mean travel time lower than 8.2 min/km (commercial speed larger than 



7.4 km/h), and only 28 trip stages (13%) have a mean travel time larger than 4 km/min 
(speed lower than 15 km/h). There is a positive relationship between SD and mean travel 
time in Figure 5.b, than tends to stabilise if the cases with extreme congestion in Figure 
5.b are included (speed lower than 4 km/h). Removing the two cases of extreme 
congestion, we obtain Figure 8.c, in which a linear relationship has a stronger support.  
 
 
Finally, we analyse fast trips in cars and buses, in order to observe the nature of TTV at 
speeds comparable to that of metro (Figure 8.a). Figure 9 shows the relationship between 
SD and mean travel time, for trips whose mean travel time is lower than 3 min/km by car 
and bus. In the case of cars (Figure 9.a), the few observations remaining still support a 
positive relationship between mean and SD of travel time, whereas for buses no 
relationship is clearly identifiable. All in all, we can conclude that in a large middle range of 
bus commercial speed -roughly between 8 and 20 km/h- an increase on average 
(commercial) speed will very likely induce a reduction of travel time variability, however it 
is not clear the implications on TTV of changes in average speed for speeds over (low 
demand and low congestion) or bellow (extreme congestion) that range. 
 
 

 
                                    (a) car                                                                     (b) bus 

Figure 9: Relationship between SD and mean in-vehicle time, car and bus, mean travel 
time below 3 min/km. 

 
5. Travel time variability: door-to-door trips by public transport 
 

The previous analysis was performed for each trip stage independently, with the aim of 

observing differences on travel time variability for walking, waiting and in-vehicle times. 

Because we have repeated observations of door-to-door trips, we can go beyond that, to 

identify which trip stages, and to what extent, are statistically significant in explaining 

total travel time variability, which includes different stages and modes of transport. In this 

section, we estimate a regression model for the standard deviation and the variance of 



total travel time, as a function of the mean access, waiting, transfer and in-vehicle times 

per mode, as shown in equations 1 and 2 next: 

 
0 1 2 3 4 5 6walk access wait bus wait metro veh bus veh metro walk trans

b b t b t b t b t b t b t
     

                      (1) 

2

0 1 2 3 4 5 6walk access wait bus wait metro veh bus veh metro walk trans
c c t c t c t c t c t c t

     
                      (2) 

Table 5 shows the model estimation results for the standard deviation and variance 

models, obtained with the statistical package SPSS. Not all trips stages turn out to be 

statistically significant to explain total travel time variability. Only bus waiting time and 

bus in-vehicle time are significant (99% confidence level), whereas average walking and 

metro waiting and in-vehicle times are not significant. In Model 1, one extra minute of bus 

waiting time and in-vehicle time is roughly related to 30 seconds and 6 seconds increase 

on the standard deviation of total travel time, respectively. Therefore, we conclude that 

bus waiting time is the single strongest source of travel time variability, followed by bus 

in-vehicle time. The variability of walking and metro travel times is low enough not to 

produce a statistically significant effect on total travel time variability. This result points 

out at the fact that efforts to decrease travel time variability by public transport should be 

targeted at reducing mean waiting and running times by bus. Therefore, increasing bus 

frequency (not to the point to induce bunching) and introducing segregated busways and 

bus lanes are among policies that are expected to reduce total travel time variability. 

Variable 
 

Model 1: Standard deviation Model 2: Variance 

Parameter t-ratio p-value Parameter t-ratio p-value 

Constant 2.706 3.556 .001 -27.412 -1.765 .083 

Average walking 
time (access) 

.027 .330 .743 .300 .178 .859 

Average bus 
waiting time 

.524 7.235 .000 9.147 6.188 .000 

Average metro 
waiting time 

.855 1.472 .147 10.856 .916 .364 

Average bus in-
vehicle time 

.090 6.635 .000 1.707 6.186 .000 

Average metro in-
vehicle time 

.009 .188 .852 .231 .226 .822 

Average walking 
time (transfer) 

-.149 -1.286 .204 .220 .093 .926 

Number of 
observations 

62 
 

62 
 

Adjusted R-square 
0.666 0.659 

Table 5: Multivariate regression models 



The fact that metro trip stages were not significant does not mean that metro waiting and 
in-vehicle time are not subject to variability, as shown in Figures 7 and 8. At least two 
factors can explain this conclusion; first, even though metro waiting and travel time are 
variable, the relationship between variability and mean waiting and in-vehicle times is not 
as strong as for buses (compare Figures 7.b and 7.c for waiting time, and Figures 8.a and 
8.c for in-vehicle times), specially so for buses with commercial speed between 8 and 20 
km/h. Second, the standard deviation of metro travel time is always lower than 0.8 
min/km, whereas for buses is up to 4 min/km. Waiting times in metro are also lower and 
much less variable than that of buses. 
 

6. Concluding remarks 
 
In this article, we have studied the travel time variability of cars and public transport trips 
in the city of Santiago, Chile. Two databases are used for this purpose, one for cars trips 
obtained with the floating car method in different routes, and another one that account 
for door-to-door trips by bus and/or metro, performed over several days by surveyors.  
 
The main results obtained are summarised next. It is found a clear and strong relationship 
between the standard deviation and mean times for car travel time, bus waiting and bus 
in-vehicle time, whilst walking time and waiting and travel time by metro are also subject 
to variability, but to a lesser extent than the other modes. Moreover, in the case of 
walking and metro in-vehicle time, the relationship between mean and standard deviation 
of travel time is not so clear. When analysing car travel time variability, a linear 
relationship between mean and SD of travel time has a slope between 0.30 and 0.32, 
equal to the result found in Sydney (Tirachini et al., 2014), i.e., an increase of 1 minute per 
kilometre in mean travel time, in average is associated with an increase between 18 and 
19 seconds in standard deviation. Similar analyses from other cities should be performed 
to assess the generalizability of this finding. 
 
Second, in door-to-door public transport trips, we obtained that total travel time 
variability is significantly explained by bus waiting and in-vehicle time, whilst walking and 
metro were not statistically significant. This has relevant policy implications on the 
interventions that should be preferred in order to reduce total travel time variability; such 
that increasing bus frequency and introducing bus priority measures (at least for bus 
commercial speeds in the range 8-20 km/h). The relationship between mean and variance 
of bus waiting time can be used to assess the value of reducing bus bunching, not only on 
reducing average waiting times, but also on decreasing its variability.  
 
The fact that metro stages are not significant is mainly explained by the weak relationship 
between mean and variability of waiting and in-vehicle times by metro, and the fact that 
metro is generally more reliable than bus. It remains as a direction of further research to 
characterise metro travel time variability in a more precise way, beyond using mean 



values as explanatory variables. A detailed analysis of bus travel time variability for low 
and extreme congestion should also be introduced. 
 

Acknowledgements 
 
We thank public agencies UOCT (Unidad Operativa de Control de Tránsito) and DPTM 

(Directorio de Transporte Público Metropolitano) for providing us with the travel time data 

used in this research. This study is part of the Fondecyt Iniciación Project “Social effects 

and quality of service valuation of public transport services” (Grant 11130227), funded by 

CONICYT, Chile. The first author also acknowledges financial support from the Complex 

Engineering Systems Institute (Grants ICMP-05-004-F,CONICYT FBO16).  

 
References 
 
Aaron, M., Bhori, N. and Guessous, Y. (2014). Estimating travel time distribution for reliability 
analysis. Paper presented at Transport Research Arena 2014, Paris. 

Abkowitz, M. D. and Engelstein, I. (1983). Factors affecting running time on transit routes. 
Transportation Research Part A 17(2): 107-113. 

Bates, J., Polak, J., Jones, P. and Cook, A. (2001). The valuation of reliability for personal travel. 
Transportation Research Part E 37(2-3): 191-229. 

Börjesson, M., Eliasson, J. and Franklin, J. P. (2012). Valuations of travel time variability in 
scheduling versus mean–variance models. Transportation Research Part B 46(7): 855-873. 

Byon, Y.-J., Cortés, C. E., Martinez, F. J., Munizaga, M. and Zúñiga, M. (2011). Transit Performance 
Monitoring and Analysis with Massive GPS Bus Probes of Transantiago in Santiago, Chile: Emphasis 
on Development of Indices for Bunching and Schedule Adherence. TRB 90th Annual Meeting, 
Washington D.C. 

Cambridge Systematics, Texas A&M Transportation Institute, University of Washington, Dowling 
Associates, Street Smarts, Levinson, H. and Rakha, H. (2013). Analytical Procedures for 
Determining the Impacts of Reliability Mitigation Strategies. SHRP 2 Report S2-L03-RR-1, 
Transportation Research Board, Washington D.C. . 

Carrion, C. and Levinson, D. (2012). Value of travel time reliability: A review of current evidence. 
Transportation Research Part A 46(4): 720-741. 

Chen, X., Yu, L., Zhang, Y. and Guo, J. (2009). Analyzing urban bus service reliability at the stop, 
route, and network levels. Transportation Research Part A 43(8): 722-734. 

El-Geneidy, A., J. Horning and Krizek, K. (2008). Analyzing transit service reliability using detailed 
data from automatic vehicular locator systems. 87th Annual Meeting of the Transportation 
Research Board, Washington, D.C. 

Eliasson, J. (2006). Forecasting travel time variability. European Transport Conference. 



Eliasson, J. (2007). The relationship between travel time variability and road congestion. World 
Conference on Transport Research, Berkeley. 

Fosgerau, M. and Karlström, A. (2010). The value of reliability. Transportation Research Part B 
44(1): 38-49. 

Furth, P. G. (2000). Data Analysis for Bus Planning and Monitoring. Synthesis of Transit Practice 34, 
Transit Cooperative Research Program, Transportation Research Board. 

Jackson, W. B. and Jucker, J. V. (1982). An empirical study of travel time variability and travel 
choice behavior. Transportation Science 16(6): 460-475. 

Kieu, L. M., Bhaskar, A. and Chung, E. (2014). Establishing definitions and modeling public 
transport travel time variability. Transportation Research Board 93rd Annual Meeting, 12-16 
January 2014, Washington D.C. 

Kim, J., Mahmassani, H. S., Vovsha, P., Stogios, Y. and Dong, J. (2013). Scenario-based approach to 
travel time reliability analysis using traffic simulation models. TRB 2013 Annual Meeting, 
Washington D.C. 

Lam, T. C. and Small, K. A. (2001). The value of time and reliability: measurement from a value 
pricing experiment. Transportation Research Part E 37(2-3): 231-251. 

Li, Z., Hensher, D. A. and Rose, J. M. (2010). Willingness to pay for travel time reliability in 
passenger transport: A review and some new empirical evidence. Transportation Research Part E 
46(3): 384-403. 

Lomax, T., Schrank, D., Turner, S. and Margiotta, R. (2003). Selecting travel reliability measures. 
Report available at http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/TTI-2003-3.pdf, 
accessed Dec 12th, 2014. 

Mahmassani, H. S., Hou, T. and Dong, J. (2012). Characterizing travel time variability in vehicular 
traffic networks: deriving a robust relation for reliability analysis. Transportation Research Record 
2315: 141-152. 

May, A. D., Bonsall, P. W. and Marler, N. W. (1989). Travel time variability of a group of car 
commuters in North London. Institute of Transport Studies, University of Leeds, Working Paper 
277. 

Mazloumi, E., Currie, G. and Rose, G. (2010). Using GPS data to gain insight into public transport 
travel time variability. Journal of Transportation Engineering 136(7): 623-631. 

Moghaddam, S. S., Noroozi, R., Casello, J. M. and Hellinga, B. (2011). Predicting the mean and 
variance of transit segments and route travel times. Transportation Research Record 2217: 30-37. 

Mott MacDonald (2008a). Estimation of variability functions for additional inter-urban road types. 
Report for ITEA division, Department for Transport, London, November 2008. 

 
Mott MacDonald (2008b). Estimation of DTDV functions for motorways. Report for ITEA division, 
Department for Transport, London, January 2008. 

http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/TTI-2003-3.pdf


Noland, R. B. and Small, K. A. (1995). Travel-time uncertainty, departure time choice, and the cost 
of morning commute. Transportation Research Record 1493: 150-158. 

Osuna, E. E. and Newell, G. F. (1972). Control strategies for an idealized bus system. 
Transportation Science 6(1): 52-71. 

Peer, S., Koopmans, C. and Verhoef, E. T. (2012). Predicting travel time variability for cost-benefit 
analysis. Transportation Research A 46(1): 79-90. 

Pu, W. (2011). Analytic relationships between travel time reliability measures. Transportation 
Research Record 2254: 122-130. 

Rakha, H., El-Shawarby, I. and Arafeh, M. (2010). Trip travel-time reliability: issues and proposed 
solutions. Journal of Intelligent Transportation Systems 14(4): 232-250. 

Senna, L. A. D. S. (1994). The influence of travel time variability on the value of time. 
Transportation 21: 203-228. 

Strathman, J., Dueker, K., Kimpel, T., Gerhart, R., Turner, K., Taylor, P., Callas, S., Griffin, D. and 
Hopper, J. (1999). Automated bus dispatching, operations control, and service reliability: baseline 
analysis. Transportation Research Record 1666: 28-36. 

Strathman, J. G. and Hopper, J. R. (1993). Empirical analysis of bus transit on-time performance. 
Transportation Research Part A 27(2): 93-100. 

Susilawati, S., Taylor, M. A. P. and Somenahalli, S. V. C. (2010). Travel time reliability measurement 
for selected corridors in the 

Adelaide Metropolitan Area. Journal of the Eastern Asia Society for Transportation Studies 8: 86-
102. 

Susilawati, S., Taylor, M. A. P. and Somenahalli, S. V. C. (2013). Distributions of travel time 
variability on urban roads. Journal of Advanced Transportation 47(8): 720-736. 

Taylor, M. A. P. and Susilawati (2012). Modelling travel time reliability with the Burr distribution. 
Procedia - Social and Behavioral Sciences 54: 75-83. 

Tirachini, A., Hensher, D. A. and Bliemer, M. C. J. (2014). Accounting for travel time variability in 
the optimal pricing of cars and buses. Transportation 41: 947-971. 

Tu, H. (2008). Monitoring travel time reliability on freeways. PhD thesis, Delft University of 
Technology, The Netherlands. 

Tu, H., van Lint, J. and van Zuylen, H. (2007). Impact of traffic flow on travel time variability of 
freeway corridors. Transportation Research Record 1993: 59-66. 

van Lint, J. W. C. and van Zuylen, H. J. (2005). Monitoring and predicting freeway travel time 
reliability: Using width and skew of the day-to-day travel time distribution. Transportation 
Research Record 1917: 54-62. 



van Lint, J. W. C., van Zuylen, H. J. and Tu, H. (2008). Travel time unreliability on freeways: Why 
measures based on variance tell only half the story. Transportation Research Part A 42(1): 258-
277. 

 

APPENDIX A: Chi-square and Kolmogorov-Smirnov tests 
 
The test of goodness of fit are statistical tests used to determine if observed data do or do 

not fit with any theoretical probability distribution, that is, whether there are statistically 

significant differences between the observed distribution (𝐹𝑜) and the expected 

distribution (𝐹𝑒). The statistical hypotheses that arise are: 

𝐻0: Data analyzed follow a distribution M (null hypothesis) 

 𝐹𝑜 = 𝐹𝑒 

𝐻1: Data analyzed do not follow a distribution M 

𝐹𝑜 ≠ 𝐹𝑒  

In the case of the Kolmogorov-Smirnov test, the statistic D considers the deviation 

between the probability distribution function of the sample 𝐹𝑜, and the theoretical 

probability function 𝐹𝑒 chosen, for a sample of size n. 

𝐷 = max
1≤𝑖≤𝑛

|𝐹𝑜̂(𝑥𝑖) − 𝐹𝑒(𝑥𝑖)| 

If the observed values 𝐹𝑜̂(𝑥) are similar to those expected 𝐹𝑒(𝑥), the value of 𝐷 is going to 

be small. The greater the discrepancy between the two distributions, the greater the value 

of 𝐷. The decision may also be made by using the p-value associated with statistic 𝐷. The 

p-value is defined as: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑃(𝐷 > 𝐷𝑜𝑏𝑠 / 𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒) 

If the p-value is large, it means that if the null hypothesis is true, the observed value of the 

statistic 𝐷 was expected. Therefore, there is no reason to reject this hypothesis. However, 

a small p-value implies that if the null hypothesis is true, it is very difficult for the value of 

𝐷 that has been observed to occur. In other words, the null hypothesis should be rejected. 

Thus, for a significance level α, the rule decision is: 

If p-value ≥ 𝛼 ⇒ Do not reject 𝐻0 

If p-value <  𝛼 ⇒ Reject 𝐻0 



In the case of Chi Square test, given a random sample of size 𝑛 from a population with a 

specified distribution 𝑓𝑜(𝑥), and assuming that the sample observations are grouped into 

𝑘 classes, being 𝑜𝑖 the number of observations in each class 𝑖 =  1,2, . . . , 𝑘, with the 

specified model 𝑓0(𝑥) we can calculate the probability 𝑝𝑖 that any data belongs to a class 

𝑖, and the expected frequency 𝑒𝑖 for class 𝑖, ie the amount of data that should be included 

in the class 𝑖 by the specified model: 

𝑒𝑖 = 𝑝𝑖  𝑛            𝑖 =  1, 2, . . . , 𝑘 

Then, we have two frequency values for each class 𝑖: 𝑜𝑖 is the observed frequency and 𝑒𝑖 is 

the expected frequency. Given this, the 𝜒2 statistic is appropriate to test goodness of fit 

and thus evaluate the discrepancy between the two frequencies: 

𝜒2 = ∑
(𝑜𝑖 − 𝑒𝑖)2

𝑒𝑖

𝑘

𝑖=1

 

with 𝑣 = 𝑘 − 𝑟 − 1 degrees of freedom, where 𝑟 is the number of parameters of the 

distribution to be estimated from the sample. It is noteworthy that a necessary condition 

to apply this test is 𝑒𝑖 ≥ 5 ∀𝑖. 

Given a significance level 𝛼, is defined a critical value 𝜒𝛼
2 for rejection of the proposed 

hypothesis 𝐻𝑜: 𝑓(𝑥) = 𝑓0(𝑥). The criteria for making the decision between the two 

hypotheses is: 

If 𝜒2 ≤ 𝜒𝛼
2 ⇒ Do not reject 𝐻0 

If 𝜒2 > 𝜒𝛼
2 ⇒ Reject 𝐻0 

Equivalently, if the p-value is less than α, 𝐻0 should also be rejected. 

 


