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Abstract 
Various contributions to the recent literature on congestion pricing have demonstrated that when 
services at a congestible facility are provided by operators with market power, the case in point often 
being a few airlines jointly using a congested airport, optimal congestion pricing rules deviate from 
the familiar Pigouvian rule that tolls be equal to the marginal external costs. The reason is that an 
operator with market power has an incentive to internalize the congestion effects that its customers 
and vehicles impose upon one-another, so that Pigouvian tolling would lead to overpricing of 
congestion. More recent contributions to this literature, however, have brought to the fore that when 
congestion at the facility takes on the form of dynamic bottleneck congestion à la Vickrey (1969), 
where trip scheduling is the key behavioural margin, there may exist no Nash equilibrium in arrival 
schedules for oligopolistic operators also under rather plausible assumptions on parameters. This 
paper investigates whether in such cases, an equilibrium does exists for another congestion 
technology, namely the Henderson-Chu dynamic model of flow congestion. We find that a stable and 
unique equilibrium exists also in cases where it fails to exist under bottleneck congestion (notably 
when the value of schedule late exceeds the value of travel delays). Our results suggest that self-
internalization with only two firms leads to a considerable efficiency gain compared to the atomistic 
equilibrium (85% or more of the gain from first-best pricing in our numerical exercises). 
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1. Introduction 
Congestion at airports has recently grown into an important theme in the economics literature. 
Early contributions by Daniel (1995), Brueckner (2002) and Pels and Verhoef (2004) have 
brought to the fore that models of road traffic congestion are not directly applicable to the 
economic analysis of airport congestion, as in contrast to atomistic road users, airlines with 
market power would face an incentive to internalize self-imposed congestion. As a result, a 
traditional Pigouvian toll equal to the marginal external cost would lead to overcharging of 
congestion, and would have to be corrected by a certain term – one minus the airline’s market 
share in a basic Nash-Cournot setting – to secure a socially optimal outcome. Moreover, when 
airlines with market power have an incentive to also apply demand-related mark-ups in their 
pricing policies, a further downward adjustment compared to the Pigouvian rule is in order for 
efficiency reasons. 
 There is mixed evidence on the degree to which internalization of self-imposed 
congestion indeed occurs in reality. Mayer and Sinai (2003), for example, provide evidence 
supporting such “self-internalization”, while Daniel and Harback (2008) argue that traffic 
patterns at airports mostly follow patterns that one would expect with atomistic behaviour. 
Several theoretical contributions shed further light on this seemingly contradictory evidence. 
Notably, Brueckner and Van Dender (2008) show that a Stackelberg leader competing with a 
competitive fringe of atomistic players would not internalize self-imposed congestion if both 
products are perfect substitutes, as the leader would realize that unused capacity will be filled-
up with aircraft from the fringe, leaving congestion unaltered but reducing the leader’s profit. 
Silva and Verhoef (2013) consider Bertrand (rather than Cournot) behaviour of non-atomistic 
airlines offering imperfect substitutes, and find that also in this case self-internalization is 
limited, and more so when the products of the competing airlines become closer substitutes. 
Quite intuitively, a Bertrand player realizes that even when the other player keeps his fare 
fixed, his quantity will rise in response to a reduction in the player’s own fare. This makes 
self-internalization appear less attractive than what it seems under a Cournot assumption of a 
fixed quantity supplied by the competitor. 
 Apart from the nature of the game, also some other aspects of the problem have 
received attention. For example, Basso and Zhang (2007) consider the role of airport capacity 
choice, and Verhoef (2012) studies the design of self-financing mechanisms for congestible 
facilities with market power, motivated by the observation that the lowering of tolls under 
Cournot behaviour, to levels below the marginal external cost, makes the well-known 
Mohring-Harwitz (1960) theorem on self-financing of optimally priced and dimensioned 
infrastructure break down. 

More recently, the dynamics of congestion have been subject to analysis. Silva, 
Verhoef and Van den Berg (2014) proposed a dynamic model of airport congestion, 
combining the game-theoretic set-up of most of the earlier work with the bottleneck 
congestion technology proposed by Vickrey in (1969) for the analysis of road pricing, and 
developed in various direction later on by Arnott, De Palma and Lindsey (1993). While Silva 
et al. (2014) could use this model to describe monopoly and leader-fringe cases, with the 
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latter showing that the leader is forced to schedule arrivals according to atomistic patterns in 
the peak center, they also reported a rather discomforting result, namely that the model seems 
to have no pure-strategies equilibrium in arrival schedules for the case of a Cournot oligopoly. 

Silva, Lindsey, De Palma and Van den Berg (2014) confirmed the non-existence of 
equilibrium in the said setting for a duopoly, albeit that they demonstrate that it applies only 
when the so-called value of schedule delay late (γ) exceeds the value of travel delays (α). 
When the opposite applies, there is an equilibrium; however, it is one in which the strategies 
are such that no queuing occurs. Although this does not overturn the relevance of the 
particular case in any sense, it does suggest that this would make the model still unable to 
describe equilibrium on congested facilities with “visible” (queued) congestion. 

The proof is, not surprisingly, lengthy, but the main idea is that an equilibrium should 
be robust against both marginal and non-marginal changes that a player can make in his 
arrival schedule. The former condition implies that the firm-internal marginal cost be equal 
across the arrival interval(s) that the airline actually uses. Equilibrium breaks down because 
the only arrival pattern that secures this condition to be met for all players, is not robust 
against a unilateral non-marginal deviation in a player’s arrival schedule. In particular, 
starting from that equilibrium, the player finds it profitable to take out part of its flights. 
Keeping the other players’ departure schedules fixed, their arrivals will have been completed 
before the end of the original candidate peak equilibrium, giving the deviating player the 
opportunity to use the freed up interval for unqueued arrivals, which will lower this player’s 
cost compared to the candidate equilibrium. 
 Given the widespread prevalence of congestion on airports and the presumed 
relevance of its dynamic “peak-hour”  nature in many instances, combined with the rather 
extreme nature of leader-fringe competition – the only type of competition that does have an 
equilibrium in pure strategies with dynamic bottleneck congestion – it is probably not just an 
intellectual challenge to identify and possibly remedy the characteristic of the model that is 
responsible for the non-existence of equilibrium. It also seems to be a task with a clear 
societal relevance. Against that background, this paper investigates whether equilibrium is 
restored under alternative assumptions on the congestion technology. In particular, we believe 
that the assumptions on the demand side – basically entailing the existence of a most-desired 
arrival moment and shadow costs of deviations from this moment (β for early arrivals, γ for 
late ones), and the existence of a disutility of travel delays (with unit value α) – are too 
reasonable to drop. Although heterogeneity in consumer preferences or in airlines’ cost 
structures may also help establish equilibrium, it remains a bit awkward when under (too 
much) homogeneity, no equilibrium would exist. The same is true for uncertainty in travel 
times. Hence, the specific congestion technology seems a first candidate to consider. 
 In this paper, we build upon the framework set out in Silva, Verhoef and Van den Berg 
(2014), but replace the bottleneck congestion technology with a model of flow congestion. 
Again borrowing from classics in road congestion modelling, we consider the model 
originally proposed by Henderson (1974, 1981), and later refined by Chu (1995). The 
essential feature of the model is that it makes the travel delay associated with an arrival at a 
certain moment a function of the instantaneous arrival flow at that moment. The model may 
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thus seem to give a reasonable description and approximation of dynamic equilibrium in 
terms of scheduling behaviour and travel delays when there is no strict and predictable FIFO 
(first-in-first-out) queuing discipline, and players instead have an unbiased but somewhat 
rough expectation of the travel delay that an arrival at a certain moment will bring. Another 
reason why the congestion technology may give a more accurate description of dynamic 
congestion patterns is when the facility operator has the possibility of opening additional but 
lower quality capacity at busier times, such as more remote terminals or runways, which bring 
additional on-the-ground travel delays. 
 We will investigate whether under this alternative congestion technology, there is an 
equilibrium in pure strategies in terms of arrival flows, and if it does, we will assess its 
efficiency for the case of duopoly relative to that of two natural benchmarks: the purely 
atomistic equilibrium, and the social optimum. The paper proceeds as follows. Section 2 will 
present the model and the equilibrium conditions for the most general case in which none of 
the parameters is pinned down. We will show that in general, equilibrium can be expected to 
exist with this congestion technology. However,  because this equilibrium cannot be given in 
closed-form, we will proceed by discussing a number of special cases. A first case, in Section 
3, uses a special congestion function, namely one that is linear in the aggregate arrival flow. 
For this case, we can present the equilibrium in closed form, independent of whether the two 
firms are symmetric. We next turn to a more general case in Section 4, in which the power of 
the congestion function is larger than one. By staying as close as possible to the numerical 
version of the linear model, we provide some further insights, even though there is no closed-
form solution. Finally, in Section 5, we simplify by imposing symmetry upon the two firms, 
and again obtain closed-form solutions but now also for non-linear congestion functions. 
Section 6 concludes. 

2. A dynamic model of operators with market power using the same facility with 
flow congestion 

2.1. The original Chu (1995) model1 
The congestion technology that we use in our analysis was originally proposed by Chu 
(1995), building on earlier work by Henderson (1974, 1981). What distinguishes this 
congestion technology from others is that it assumes that a traveller’s speed will be constant 
over time throughout the trip, depending only on the arrival rate at the road’s exit at the 
instant that the trip is completed (Chu). The model thus ignores interactions between 
travellers who have departed at different instants, no matter how close. Lindsey and Verhoef 
(2000) therefore refer to this assumption as “no propagation”, to distinguish it from models 
where shock waves travel at finite speeds along a road. 

The basic model considers N identical travellers who use a single road for their trip in 
the morning commute. They have perfectly inelastic demand, a desired arrival time denoted 
t*, a value of time α, and values of schedule delay of β for early arrivals and γ for late ones. 

                                                 
1 The exposition of the basic model in this sub-section 2.1 draws heavily from the one in Verhoef (2014). Literal 
citations are not marked as such and are taken to be acknowledged through this footnote. 
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As is customary, we define δ ≡ (β∙γ)/(β+γ) as a composite schedule delay cost coefficient. The 
capacity of the road is given, and is denoted K (there are some changes in notation compared 
to Chu’s), and the travel time T(t) associated with an arrival at time t depends on both K and 
on the instantaneous arrival rate f(t). To obtain closed-form solutions, a functional form for 
the travel time function T(f(t);K) needs to be specified. Chu uses a power-law or BPR (Bureau 
of Public Roads) type of function: 

( )( ( ); ) f
f tT f t K T
K

χ
 = +  
 

 (1) 

where χ determines the curvature of T(·). Note that the regular BPR function pre-multiplies 
the second term with Tf∙b with b being a second parameter, but this can be dropped by 
choosing the units of K. Letting t(t) denote a possibly time-varying toll,  the generalized price 
for an arrival at t can be written as the sum of t(t′), the travel time cost cT(t′), and the schedule 
delay cost cSD(t′): 

( )
( )

* *

* *

if 
( ) ( ) ( ) ( ) ( ) ( ( ); )

if 
T SD

t t t t
p t t c t c t t T f t K

t t t t

β
t t α

γ

 ⋅ − ≤= + + = + ⋅ + 
⋅ − >

 (2) 

In the dynamic equilibrium, arrival rates for early (before t*) and late (after t*) arrivals should 
be such that p(t) remains constant over time. The timing of the peak then follows from the 
conditions that (i) the schedule delay cost for the very first driver, arriving at tq, and the very 
last driver, arriving at te, should be the same, and (ii) between tq and te, exactly N drivers 
should have arrived. For the travel time function of equation (1), the no-toll equilibrium is 
then characterized by (the subscript A stands for “atomistic no-toll equilibrium”): 

( )

( )

1

*

1

*

t: 
( )

t: 

qA qA

A

eA eA

K t t t t t
f t

K t t t t t

χ

χ

β
α

γ
α


  ⋅ ⋅ − ∀ ≤ ≤   = 

  ⋅ ⋅ − ∀ < ≤  
 

 (3) 

Using the short-hand parameter 

11N
K

χ
χχ δ

χ α

+ +
Ψ = ⋅ ⋅ 

 
 (4) 

and setting t*=0 without loss of generality, the peak’s start and end times can be written as: 

qAt α
β

= −Ψ ⋅  (5) 

eAt α
γ

= Ψ ⋅  (6) 

The equilibrium in (3)-(6) is not efficient due to the uninternalized congestion externality, and 
Chu (1995) shows that the first-best optimum can be attained by setting a time-varying toll 
that each instant takes on the familiar Pigouvian form: 

( ( ))( ) ( )
( )

Tc f tt f t
f t

t ∂
= ⋅

∂
 (7) 
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Applying this toll for the fixed-demand case widens the peak and flattens the arrival rate 
pattern, as is shown by the optimal counterparts of (3)-(6) (where O stands for “optimum”): 

( )

( )

1

*

1

*

1 t: 
1

( )
1 t: t

1

qO qO

O

eO eO

K t t t t t
f t

K t t t t

χ

χ

β
χ α

γ
χ α


  ⋅ ⋅ ⋅ − ∀ ≤ ≤  +  = 

   ⋅ ⋅ ⋅ − ∀ < ≤ +  

 (8) 

( )
1

11qOt χ
αχ
β

+= − + ⋅Ψ ⋅  (9) 

( )
1

11eOt χ
αχ
γ

+= + ⋅Ψ ⋅  (10) 

Integrating the equilibrium arrival rates confirms that the proportions of early and late drivers 
are such that a fraction γ/(β+γ) of the N drivers arrive early, and a fraction β/(β+γ) late. This is 
true both in the no-toll equilibrium and in the first-best optimum.  
 
2.2. Operators with market power 
Now let us turn to the case of actual interest in this paper, where operators with market power 
provide services using the congestible facility. To keep the analysis tractable, we will be 
considering the case of two operators (i and j). Our focus on the internalization of self-
imposed congestion, and on the existence of a dynamic equilibrium, allows us to ignore firm 
interactions resulting from competition for the same passengers. We thus assume that the two 
operators serve different markets (which is why we will not refer to a duopoly). 

Congestion costs could accrue to passengers (their valuations of delays and scheduling 
disutilities), to the operators (e.g. fuel costs and costs related to crew costs), or to both. Silva 
and Verhoef (2013), among others, have argued that the two types of congestion costs would 
essentially enter a firm’s profit optimization problem in the same way when congestion costs 
incurred by passengers translate on a dollar-by-dollar basis into a lower willingness to pay 
fares. Under our assumptions, with travellers who are identical in terms of preferences, and 
with fares that may be freely differentiated over clock time to support a firm’s preferred 
arrival time pattern, this is indeed the case. This means that costs incurred by the passengers 
and by the firm enter the firm’s optimization problem symmetrically. More specifically, 
because we keep load factors fixed, we need not distinguish between the airline’s costs per 
flight, the airline’s costs per passenger, and costs incurred by the airline’s passengers. 
Dropping all time-independent costs per-passenger as these provide no useful insight into the 
issues we study, and assuming symmetry in costs, we may define the following average (per 
passenger) costs for firms i and j:  

( ) ( ) ( ( ) ( ); ) ( )i j T i j SDac t ac t c f t f t K c t= = + +  (11a) 

For the more specific assumptions of “αβγ-preferences” (linear schedule delay costs and a 
constant value of time) and a BPR travel time function, the case that we will henceforth refer 
to as the “specific model” for the sake of brevity, this becomes:  
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( ) ( ) if 0
( ) ( )

if 0
i j

i j

f t f t t t
ac t ac t

t tK

χ β
α

γ
+ − ⋅ ≤  

= = ⋅ +   ⋅ > 
 (11b) 

(t* is again set at 0). 
Under these assumptions, both firms face the incentive to fully internalize firm-

internal congestion externalities, just as in the static model Brueckner’s (2002). Also, and as a 
result, both firms will find it optimal to equalize over time, as long as it schedules arrivals, its 
firm-internal marginal cost mcx, defined as: 

( ) ( ( ) ( ); ) ( ) ( ) ( ) { , }x T i j x T SDmc t c f t f t K f t c c t x i j′= + + ⋅ ⋅ + =  (12a) 

or, for the specific model:  
1( ) ( ) ( ) ( ) if 01( ) ( ) { , }

if 0
i j i j

x x

f t f t f t f t t t
mc t f t x i j

t tK K K

χ χ β
α χ

γ

−+ + − ⋅ ≤    
= ⋅ + ⋅ ⋅ ⋅ + =    ⋅ >   

 (12b) 

If a firm’s firm-internal marginal cost were not constant over time, transferring a passenger to 
a moment with a lower mci would increase profit. Note that this is true independent of 
whether the lower mci would arise from lower costs incurred by the firm while the fare is kept 
constant, or from lower costs incurred by the passenger and the fare for that passenger is 
raised accordingly. Also note that this is independent of any demand-related mark-up that the 
firm may apply in its pricing policy. Given that mark-up and given the number of passengers 
it chooses to serve, it remains profit maximizing for firm x to equalize mcx as long as the firm 
schedules arrivals, and to choose not to use particular time intervals when mcx – then equal to 
ac - exceed mcx in used time intervals. For most of the paper we will therefore focus attention 
on the question of whether given a pair of chosen quantities Ni and Nj, a dynamic equilibrium 
exists, and how its efficiency compares to that of the two benchmarks of the atomistic no-toll 
equilibrium and the social optimum, without modelling explicitly how the firms choose Ni and 
Nj by equating marginal revenue to marginal cost. 
 To determine whether a Nash equilibrium in arrival flows exists, and if so what it 
looks like, it is convenient to first establish a number of features that characterize an 
equilibrium. 
 
F1: Equilibrium cannot entail to disjoint arrival intervals without any overlap 
Proof  This type of equilibrium would require the minimum of ac in i’s interval Si, aci,min, to 
exceed the (equalized) maximum of mcj in j’s interval Sj to keep j out. But aci,min > mcj 
implies aci,min > acj(t) for all jt S∈ , so that we also have mci > acj(t) for all jt S∈ . But then 

firm i would find it profitable to invade j’s interval Sj.■ 
 
F2: In equilibrium there can be at most one early time interval and one late time interval in 
which only one operator schedules arrivals, and these intervals, if they exist, occur at both 
shoulder periods of the peak 
Proof  Label the (larger) firm that is present in the two shoulder periods firm i, the shoulders 
where only i schedules arrivals Si and the interval where firm j (and hence both firms) has 
arrivals Sj. The reasoning is then as above, aci,min > mcj is needed so that firm j does not have 
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an incentive to reschedule arrivals to Si, which again implies mci > acj ( jt S∈ ) in the interval 

Sj where also j schedules arrivals. This can only occur if firm i schedules arrivals in Sj. Then, 
mci( it S∈ )=mci( jt S∈ )>acj( jt S∈ ) is still possible and both firms can have a constant mcx 

over time when they schedule arrivals, so that they do not have any incentives to reschedule 
arrivals . Note that if firm i has an exclusive interval in the early shoulder, it also has one in 
the late shoulder. To see why, first assume that both firms have f equal to zero at their relevant 
tq and te (proof follows below). Firm i’s arrival interval stretches from tqi to tei, at which in 
both cases fi has dropped to zero so that mci equals cSD at both moments. Firm j faces the same 
mcj = cSD at tqi and tei, and because it sets tqj > tqi it has mcj(tqj) = ac(tqj) < mci(tqj) = ac(tqi). 
Firm j will therefore also not schedule arrivals at tei but instead terminates arrivals earlier at 
some tej for which mcj(tej) = ac(tej) < mci(tej) = ac(tei). 

The above reasoning rests on both firms having fx = 0 at the relevant tq and te, and this 
is the final part to be proven. For the large firm i, this is clearly profitable as otherwise 
mci(tqi–ε) = ac(tqi–ε) < mci(tqi); and similarly mci(tei+ε) = ac(tqi+ε) < mci(tqi) (ε is a small 
positive constant). Intuitively, if firm i had fi > 0 at tqi and tei, it could reduce its costs by 
shifting the arrival to just before tqi or just after tei, completely eliminating travel delays and 
only increasing the schedule delay costs infinitesimally. For firm j, a non-zero fj at tqj and tej 
can only be consistent with equilibrium for firm i if also the latter has a discontinuity if fi at tqj 
and tej. Specifically, fi should jump down at tqj and up at tej. Because firm i will make the jump 
such that mci is equalized around tqj and around tej, and because firm i internalizes all 
congestion only outside Sj, the total flow right after tqj will be higher than right before it; and 
similarly right before tej it will be higher than right after it. But then it must be true that 
mcj(tqj–ε) = ac(tqj–ε) < ac(tqj) < mcj(tqj), where the final inequality results from the assumed 
discontinuity in fj at tqj. Therefore, this cannot be an equilibrium for firm j. A similar 
reasoning of course applies around tej.■ 
 

The two features, F1 and F2, greatly narrow down the set of candidate Nash 
equilibria, and simplify the task of deriving them. Either the two firms’ arrival intervals 
perfectly overlap, or we have an equilibrium at which from some tqi onwards, first firm i (the 
label is assigned without loss of generality) is the only to schedule arrivals; then from some tqj 
onwards, both firms schedule arrivals up until some tej; followed by a final period lasting until 
tei in which again only firm i schedules arrivals. In the periods where firm i operates alone, the 
equilibrium arrival pattern matches the socially optimal rates of change as given in equation 
(8) for the specific model, since the firm internalizes all congestion. Formally, this means that 
we have for the general model:  

( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) 0 :i SD i T i i T qi qj ej eimc t c t f t c f t f t c t t t t t t t′ ′′= + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ∀ ≤ < ∧ < ≤∀ ∀

∀ ∀  (13) 

where a dot denotes a time derivative and a (double) prime for cT represent the first (second) 
derivative with respect to the aggregate arrival rate: ∂cT/∂f  (∂2cT/∂f2). For the specific model, 
this translates into arrival rates:  
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( )

( )

1

1

1 t: t 0
1

( )
1 t: 0 < t t

1

qi qi

i

ei ei

K t t t
f t

K t t

χ

χ

β
χ α

γ
χ α


  ⋅ ⋅ ⋅ − ∀ ≤ ≤  +  = 

   ⋅ ⋅ ⋅ − ∀ ≤ +  

 (14) 

 
It is, of course, the period in which the firms are both present, for which the determination of 
equilibrium growth rates is the most challenging. The Nash equilibrium in arrival patterns, if 
it exists, follows as the solution of a system of two differential equations, that for the general 
case read: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 :

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 :

i SD T i T i T qj ej

j SD T j T j T qj ej

mc t c t f t c f t c f t f t c t t t t

mc t c t f t c f t c f t f t c t t t t

′ ′ ′′= + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ = ∀ ≤ ≤

′ ′ ′′= + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ = ∀ ≤ ≤

∀ ∀ ∀

∀ ∀

∀ ∀ ∀

∀ ∀

 (15) 

where we introduce f(t)≡ fi(t)+ fj(t) as shorthand for the aggregate arrival rate. 
Although there is no general closed-form solution for the system of equations in (15), 

the fact that the first two terms in the middle expressions are the same allows us to write down 
the following necessary condition for equilibrium:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) :i T i T j T j T qj ejf t c f t f t c f t c f t f t c t t t t′ ′′ ′ ′′⋅ ⋅ + ⋅ ⋅ ⋅ = ⋅ ⋅ + ⋅ ⋅ ⋅ ∀ ≤ ≤∀ ∀ ∀ ∀  (16) 

This means that, when ( ) and ( )T Tc c′ ′′⋅ ⋅  are both unequal to zero, the firm with the larger flow 
has a smaller time-derivative (in absolute terms) of its flow. For the cases where fj starts and 
ends at zero at moments that fi is positive, it will then display a steeper growth or decline, 
approaching fi only asymptotically from below as t approaches t*=0. 

Since for the BPR function there is a convenient expression for the ratio of the second 
and first derivative of cT:  

( ) 1
( )

T

T

c
fc

χ′′ ⋅ −
=

′ ⋅
 (17) 

we can rework (16), for the BPR function, into:  

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) 1 :
( ) ( )

i j
j i i j qj ej

i j

f t f t
f t f t f t f t t t t t

f t f t
χ

−
= + ⋅ + ⋅ − ∀ ≤ ≤

+
∀ ∀ ∀ ∀  (18) 

Equation (18) shows that for a linear travel time function (χ=1), the growth rates will be 
equal. Quite intuitively, also when the flows are equally large – and the second term on the 
right-hand side vanishes – will the growth rates be (and remain) equal. Furthermore, for χ>1, 
we can still relate the two growth rates at the moments tqj and tej where firm j starts and stops 
operations as follows: 

( ) ( ) for { , }
2i j qj ejf t f t t t tχ

χ
= ⋅ =

−
∀ ∀  (19) 

This shows that with a sufficiently curved travel time function for which χ>2, the arrival rate 
of firm will fall when firm j commences operations, and will rise when firm j is close to 
termination. 
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 Unfortunately, the system of equations in (15) does not seem to produce manageable 
closed-form solutions for the general case, and also not for the specific model in its most 
general form where χ is left as an undetermined parameter and firms possibly differ in size. 
When making further assumptions, however, we can provide further insight into the 
properties of the solution. In Section 3, we will show that for a linear travel time function 
(χ=1), we can provide a closed-form solution for the equilibrium independent of whether 
firms are symmetric or a symmetric in size. We will also illustrate that solution numerically. 
Next, in Section 4 we will show that also for χ>1, we can still obtain a numerical solution, 
even though an analytical solution is outside reach. And finally, in Section 5, we will show 
that for firms that are symmetric in size, we can still find an analytical closed-form solution, 
even when we leave χ as an undetermined parameter. 
 Before considering these cases, we address the important question of whether there 
will be a Nash-Cournot equilibrium in terms of departure time schedules for the most general 
version of the model. Because the firm sets a continuous time profile of fx(t), it is not 
straightforward to prove existence and uniqueness formally; for this version of the paper we 
only provide a sketch of proof. Consider the firm-internal marginal cost of (12a). It is, at 
every instant, strictly increasing in the firm’s own arrival rate. This implies that when mcx is 
equalized over Sx, and ac outside Sx exceeds the value of mcx inside Sx, there is indeed only 
one value of fx(t) that equates mcx(t) to that equilibrium value of mcx for any t in Sx, and none 
outside Sx. Moving any service, or set of services, to any other moment, be it inside or outside 
Sx, can only increase the firm-internal cost since it would imply an mcx above the equilibrium 
level at moments to which additional schedules are shifted, and reduce mcx below the 
equilibrium level at moments from which the shifted schedules were taken. Undoing the shift 
thus reduces the firm’s total cost. Furthermore, (12a) implies that the two outputs at any given 
instant are strategic substitutes, where the firm-internal marginal cost is more responsive (in 
absolute terms) to the own output than to the competitor’s output. This means that at any 
given instant t, there can be only one stable intersection of the two reaction functions 
(depicting for either firm the choice of fx(t) given the other firm’s flow at that instant, and 
given the firm’s instantaneous objective to equate mcx(t) to the equilibrium value of mcx). And 
finally, a firm’s arrival interval and therefore its firm-internal marginal cost is strictly 
increasing in its own output and in the other firm’s output, securing that also with price-
sensitive demands, there will be only one equilibrium in terms of total outputs when these 
would be price-sensitive. 

3. A first specific model: linear travel delay function (χ=1) with possibly asymmetric 
firms 

3.1. Analytical solution 
It is instructive to start our exposition by giving the firm-internal marginal cost and its time 
derivative for the specific model (with αβγ-preferences and a BPR congestion function): 
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The corresponding expressions for firm j are isomorphic. It is the fact that the sum of flows 
appear in terms raised to powers of (χ–1) and (χ–2) that prevent us from finding an analytical 
solution. This complication vanishes for the linear model, since then we find:  
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so that: 
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The system of equations (22ab) can be solved to yield:  
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Given that the time-derivatives of (3) and (8) for the atomistic equilibrium and the social 
optimum become, for χ=1:  
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It is easily checked that as long as firm i operates alone, the time derivative of aggregate 
arrivals equals that in the social optimum, reflecting that firm i internalizes all congestion 



Dynamic Equilibrium at a Congestible Facility under Market Power 11 

externalities. When both firms are active, the slope of the aggregate arrivals is between that in 
the optimum and that in the atomistic equilibrium (2/3 is between 1/2 and 1). 
 After some algebra, we can derive the relevant starting and ending times of the two 
operators as a function of the two total quantities:  
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 (24) 

Also these we may compare to those in the atomistic equilibrium and in the social optimum 
for the same aggregate number of travellers, as we can derive them from (5), (6), (9), and 
(10): 
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Quite intuitively, especially after what we found for the flows, the peak with two operators 
starts between the moments that would be observed in the optimum and the atomistic 
equilibrium; and the same is true for the ending. 
 Finally, we can derive the equilibrium levels of the firm-internal marginal cost where, 
not surprisingly, we find a higher value for mci than for mcj unless the two quantities Ni and Nj 
are equal:  
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(the expression for mci is written such that it is most easily compared to that for mcj). 
 



Dynamic Equilibrium at a Congestible Facility under Market Power 12 

3.2. A numerical illustration 
To illustrate the equilibrium outlined above, we consider the specific model with αβγ-
preferences and the BPR congestion technology with χ=1. We set the parameters as follows: 
α=10; β=5; γ=20; χ=1; K=1000; Ni=1000; Nj=500. The upper panel of Figure 1 shows the 
equilibrium in terms of arrival rates, and contrasts these with the atomistic equilibrium and 
the optimum for the same total number of travellers. The lower panel shows the firm-internal 
marginal cost, as well as the average cost (note that the former overlap with the latter when 
the firm does not provide services). 
 

 

 
Figure 1. Arrival flows (upper panel) and firm-internal marginal costs (lower panel) with χ=1 

 
Figure 1 confirms that there is an equilibrium: the firm-internal mc’s are constant as long as 
the firm schedules arrivals and are higher (and equal to ac) otherwise. The upper panel 
furthermore confirms the above results that the peak with two operator starts and ends 
between the moments that apply in the atomistic equilibrium and the peak, and that the slope 
of aggregate arrivals is also between the slopes in these same two benchmarks. 
 A visual inspection of the upper panel suggests that the arrival pattern with two 
operators is already pretty close to the socially optimal pattern, even though the two firms 
only internalize self-imposed congestion. This is confirmed by the aggregate generalized cost 
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levels, which amount to 16 432 in the atomistic equilibrium, 15 625 with two operators, and 
15 492 in the social optimum. This implies that, compared to the atomistic equilibrium, the 
self-internalization by two firms brings already 86% of the efficiency gain that a move to the 
optimum would bring.  

4. A second specific model: non-linear travel delay function (χ=4) with possibly 
asymmetric firms 

When the travel delay function is non-linear, as is the case for the conventional power of χ=4 
for the BPR function, no analytical closed-form solutions seem to exist, due to the appearance 
of the sum of flows in terms raised to powers of (χ–1) and (χ–2) in the firm-internal marginal 
cost and especially its time derivative in (20). Still, we succeed to find a numerical solution, 
and we will briefly presented here. Apart from χ which is set at 4, the parameters remain the 
same compared to the linear model of Section 3.2. Figure 2 shows the results. 
 

 

 
 

Figure 2. Arrival flows (upper panel) and firm-internal marginal costs (lower panel) with χ=4 
 
Again, the lower panel confirms that equilibrium is reached. Note, in the upper panel, that 
indeed fi drops right after tqj and rises right before tej, as predicted by (19). Again, the 
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aggregate arrival pattern with two operators appears to be relatively close to the optimal 
pattern, with the relative efficiency gain now being 0.95. And finally, as it was true for the 
linear case, we find that the start and ending of the peak, as well as the rate of change of the 
arrival rate, is, for the case with two operators, between what is found for the atomic 
equilibrium and what applies in the optimum. 

5. A third special case: a possibly non-linear travel delay function (χ undetermined) 
with symmetric firms 

Another way to avoid the lack of closed-form analytical results is to impose symmetry in 
terms of also the size on the two firms. When firms are of equal size, the only possible 
equilibrium has both firms scheduling arrivals in a perfectly overlapping interval and with 
equal flows (i.e., fully symmetric). An equilibrium with one firm operating in the shoulders 
cannot be supported because it requires a higher firm-internal marginal cost for the firm that 
has arrivals also in the shoulders. This can only be achieved if the arrival flow at every instant 
is higher for that firm in the period where both firms have arrival (see (15)), which is 
inconsistent with symmetry in firm size. In a perfectly overlapping period of arrivals, both 
firms have f(t)=0 at the beginning and end of the peak (see the proof in F2), which implies 
that the firm-internal marginal cost for both firms is the same and equal to the average cost in 
the borders. Therefore, the solution has fi(t)=fj(t)=fS(t), and tqi=tqj=tqS and tei=tej=teS, where 
subscript S stands for symmetric. Solving the system of equations yields:  
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1
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As expected, (27)-(29) reveal that the peak again starts and ends between the moments 
applying in the atomistic case and in the optimum, whereas the growth rate of the aggregate 
arrival rate is again smaller than in the atomistic equilibrium in (3) (provided χ>1), but larger 
than in the optimum in (8). 
We can also solve for the total variable cost (TVC) of travel for the N users in this symmetric 
equilibrium, and compare it to that in the atomistic equilibrium and that in the optimum (both 
derived by Chu, 1995):  
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Although especially the second and third expression are not easily interpreted, it is clear from 
(30) that the ratios of total variable cost are a function of χ alone. We exploit this in Figure 3 
where we can plot the relative efficiency of self-internalization by two symmetric firms, 
defined as ωS = (TVCA – TVCS)/(TVCA – TVCO), as a function of χ alone. The figure shows 
that as the curvature of the travel delay function becomes stronger, this relative efficiency 
increases, but that even at the lowest value of χ = 1 that we consider, ωS is already around 
0.85. This confirms our earlier numerical results in the sense that again, the relative efficiency 
is substantial, and it increases with χ. 
 

 
 

Figure 3. The relative efficiency of self-internalization by two symmetric firms 
 

6. Conclusion 
We investigated self-internalization of dynamic congestion by operators with market power. 
Earlier contributions using a bottleneck congestion technology found that no equilibrium may 
exist for Nash competitors. An important result of our analysis is that we do find a stable and 
unique Nash equilibrium when employing Henderson-Chu dynamic flow congestion. 

Our results suggest that the relative efficiency of self-internalization may be rather 
high for a setting in which only two firms are present; above 85% in our numerical exercises. 
Presumably, when more firms are present, and a larger share of congestion remains 
uninternalized, this relative efficiency will drop. This is one of the issues we will address in 
follow-up research. 
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Our first research effort, however, will be to consider a second alternative congestion 
technology, in which interactions between travellers arriving at different instants are still 
present (unlike what is the case in the Henderson-Chu model), but the discontinuities of the 
pure bottleneck congestion technology are nevertheless avoided. This should allow us to 
identify better the cause of the non-existence of equilibrium in the bottleneck model; in 
particular whether this is an unavoidable consequence of having direct congestion interactions 
across arrival times, or whether it is due to some peculiarity of the bottleneck model. A 
possible and likely choice of congestion technology would be the model proposed by Agnew 
(1977). 
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