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This report includes several parts. The first part describes the problem to be 

solved. The second part describes the algorithm used in the FORTRAN code; 

includes the flow chart of the code and discusses blemishes of the program. 

Part three introduces the GAMS code and the algorithm implemented by 

the solver. The fourth part compares the two and comments on both tools. 

The last part is an appendix where sample log files are listed. 

In part B of the report the problem to be solved is modified and similar 

tests are conducted. Because this problem is easier to solve as compared to 

the original, larger problems are also solved. 

PART A 

1. The problem to be solved 

The problem to be solved is one originally solved by Anas (1982). It is a 

housing assignment problem with fixed stock in each housing submarket i   

of type k  housing and a population of tenants who are rent takers and 

utility maximizers and are distributed among the housing markets 

according to logit choice probabilities, ikjP where j   is workplace . The 

housing size in each submarket is fixed at 
ikh . Profit maximizing landlords 

allocate each unit of the stock of housing to the market with probability 
ikq . 

More precisely, the problem is defined as follows: 

i: zone of residence, i=1,…,50. 

j: zone of employment, j=1,…,50. 

k: type of housing, k=1,2. k=1 houses; k=2 apartments 

:N  number of consumers (input data) 
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ikh : sq.meters of a housing unit of type k located in residential zone i (input data) 

ikS : aggregate sq.meters of housing of all units of type k located in zone i 

:jM  income of consumer who works at zone employment zone j (data input) 

ijT : travel time from residence zone I to employment zone j (input data) 

ijkE : constant terms for each i,j,k. Assume that 111 0.E  (input data) 

ikK : constants for each i,k (input data). 

ikr : rent per square meter of type k housing in zone i. These are the unknowns to be solved. 

:  is the coefficient of disposable income in the utility between zero and one (input data) 

:  is the positive coefficient of rent in the landlord’s supply function (input data) 

The housing sub-markets at each i,k (note that there are 50 times 2 = 100 such housing sub-

markets) are at equilibrium when the rents ikr satisfy the following 100 equations 

simultaneously. 
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Note: For a feasible solution to exist, there must be enough floor space. 

Where the probability that a consumer works at employment zone j and chooses residence at 

zone I in housing type k is given by (note that the probabilities sum to one) : 
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Where the utility of (i,j,k) is: 
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The problem has a unique solution because the Jacobian has the negative 

dominant diagonal property [Anas(1982)]. 

 

  

2. The FORTRAN code:

 

Step 1 reads data from external files.  The code can be adjusted so that it can load data from 

other file forms. 
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Step 2 generates starting point for 0

ikr .  If the starting point is not a “good” one, the Newton-

Raphson procedure will result in one of the two following cases: (a) the gradient of ikr will 

diverge instead of converging and this in turn will lead to the problem of the singularity of 

Jacobian; (b) although ikr converges, but before the reduced gradient converging to close to 

zero, it will start “cycling” at some point and not be able to find a solution. 

To make the code more efficient, something should be done: if any of the two above cases 

happened at any step in the program, the algorithm will branch to step 2 where a new starting 

point can be generated. The rule that generates a starting point is as follow: 

( ) starting constant  random number ( ) ikr i by k i by k   

Where the random number is an i by k matrix whose elements are random scalars between 0 

and 2.  

In words, each time the Newton-Raphson algorithm encounters an error or fails to converge to a 

point that is close enough to the true solution, the program will regenerate a new starting point 

ikr whose elements are uniformly distributed around the mean value which equals “starting 

constant”. What is the starting constant? 

For example, if starting constant is set to 5, ( ) 5  random number ( ) ikr i by k i by k   where 

random number (i by k) is a vector whose elements are between 0 and 1. Hence, the initial 

guess of ikr is an array whose elements are between 0 and 5. If the Newton-Raphson procedure 

failed to solve the problem within a preset number of iterations, the code will generate another 

initial guess whose elements also are between 0 and 5 but different from the last initial guess. 

Step 3 will take 
ik

zr  and plug it into ( )z

ikf r  where
50

1

( ) ( ) ( )ik ijk ik ik ik

j

f Nh P S q r


 r r  and z is a 

non-negative integer represents the iteration number starting from zero. 

Step 4 checks if  max ( )z

ik ik ff tolerance r (second stopping criterion). If yes, the program 

will branch to step 8 which generates solution file and solution log files; if not, the program will 

start the Newton-Raphson procedure. 
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Step 5 is the start of the Newton-Raphson procedure. According to the following system of 

linear equations,
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vector
ik

zr will be solved. Within this step, the first part is to generate the Jacobian matrix, and 

the second part is to solve the system of linear equations using an external subroutine. 

Step 6 updates the 
ik

zr  vector: 1

ik ik ik

z z zr r r    . 

Step 7 checks the first stopping criterion: if  max
ik

z

rr tolerance  . If “yes”, exit the Newton-

Raphson loop and go to Step 4 to check the second stopping criterion. If “no”, carry on to the 

next loop. If the maximum loop number, which is set equal to 100, has reached, the program 

will branch to step 2 where a new randomly disturbed starting point will be generated. 

Step 8 reports result and generates the solution and log files. 

Comments: 

Although the program is able to solve the 
ik

r provided the tolerance level is not too small, there 

are few problems: (a) the code is not able to get a solution when tolerance is set to lower than 

7.5e-7 while GAMS is able to solve for a solution with such or higher accuracy. What happens 

when the tolerance level is too small is that the reduced gradient will start “cycling” at some 

point far from the true solution. Here reduced gradient is the terminology used in the solver 

manual. It refers to the solution of the Jacobian, which is the change of variables, or, .ikr  (b) 

For some other data sets, the FORTRAN code cannot find a solution at all regardless the starting 

point and the tolerance level. I believe this is because the bad scaling1 of the model, i.e. either 

the coefficients is too big, say, greater than 100, or it is too small, smaller than 0.01, could cause 

the scaling problem which will make the convergence very unlikely. (c) The search step length in 

this FORTRAN code is invariant with respect to the residuals level and whether or not in some 

                                                           
1
 GAMS has an option which adjusts the absolute value of elements in Jacobian and Hessian. In CONOPT3, 

the solver will “scale” the model automatically so that the elements of Jacobian are not too much far from 
1 in absolute value. 
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iteration the updated solution has reached it’s bound. For example, 1

ik ik ik

z z zr r r     where 

is the step length and is fixed at 1 in my latest FORTRAN code. With GAMS, the CONOPT solver 

provides more sophisticated algorithms to adjust the step length dynamically.  

3. GAMS 

The GAMS code reads external data files and converts the data to GDX files which can be read 

directly by the GAMS system. The GAMS code and the FORTRAN code use the same data set so 

that they can be compared. 

The solver is CONOPT3 which can be used to solve optimization problems with nonlinear 

objective and constraint functions as well as to solve system of nonlinear equations. To solve 

system of nonlinear equations, set up a dummy variable which has no relationship 

(implemented by using =n= relation) with the variables to be solved as the objective function 

will do.  

The model can be directly formulated as follow:  

 
50

1

( ) ( ); ( )ik ik ijk ijk ik ik ik ik

j

f Nh P U r ijk S q r


  r  1,2,...,50i  ; 1,2.k   

There are 100 equations and 100 variables. The advantage of this formulation is that the 

number of variables and equations are minimized (100 and 100) and it takes the smallest 

possible computer memory. However, this also leads to messy expressions of the equations.  

Moreover the time it takes to solve the problem is longer than that of using more intermediate 

variables in which case the memory needed is larger because there are more equations and 

variables.  

Alternatively, the model is formulated as: 

  
50

1

( ) ( ) ( )ik ijk ijk ijk ik ik ik ik

j

f Nh P U mrh r S q r


 r ;  1,2,...,50i  ; 1,2.j   

( )ijk ik j ik ikmrh r M h r   is the argument of the log function in the utility function. 

As intermediate variables, ( )ijk ikmrh r serve two purposes. First, by setting their lower bound to 

0.01, they can guarantee good behavior of the utility and demand functions ( ijkP ), that is if the 

rent in a particular submarket (i,k) is so high as to make disposable income in that submarket 

zero or negative, the probability in that submarket becomes almost zero. Second, using 

intermediate variables, as long as there is enough computer memory to handle the variables 

and equations, the use of these intermediate variables will significantly reduce the execution 

time of solving the nonlinear system. In this case, there are 500,100 variables and 500,100 

equations. If more intermediate variables were introduced, the solver will exit with a message 
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stating there is not enough memory. More features of the GAMS system and CONOPT solver will 

be discussed in the next section. 

4. Comparison 

Comparing the codes described above, GAMS does a better job in general solving the system of 

nonlinear equations. 

The current FORTRAN code is a direct implementation of the Newton-Raphson algorithm, which 

is not best suited for nonlinear equations whose variables have upper and lower bounds. But 

given that the tolerance of the maximum absolute reduced gradient is set at 1.0e-5 and the 

process starts from a “good” starting point, the FORTRAN program will solve the system much 

faster. See the table below. But when the tolerance level is even smaller, or the starting point is 

far from the true solution, the FORTRAN code might not be able to solve the problem while 

GAMS could. 

Another virtue of FORTRAN is that the programmer knows what is happening under the hood. 

The algorithm can be modified if the programmer knows a better algorithm. Due to the same 

reason, debugging is easier for FORTRAN in that the programmer could inspect each step of the 

code being executed while debugging in GAMS requires a decent understanding of the solver 

and possibly the algorithms employed by the solver. 

The following are some virtues of GAMS and CONOPT. 

1. Simple expression. In general a model can be presented to GAMS in a more concise and 

human-readable way which is shorter and clearer.  

2. Automatic scaling. CONOPT3 can scale the system accordingly so that more coefficients 

of the Jacobian will fall into the region between 0.01 and 100. For example, for some 

data sets I created which cannot be solved by FORTRAN due to the scaling problem, 

CONOPT can solve the system in seconds. 

3. Easier to modify models. Solvers in GAMS can generate the Jacobian and Hessian 

automatically according to the input model, this, in turn, can save a lot of time 

considering that in FORTRAN, the  Jacobian and Hessian cannot be generated 

automatically in general. Hence, when dealing with different but similar models or 

models that might need to be modified in some way at any time, GAMS has a significant 

advantage. 

4. Sophisticated algorithms and facilities of built-in solvers. In FORTRAN, this has to be 

done manually.  That means that the programmer has to fully understand the 

algorithms and write the code from scratch. In contrast, CONOPT is able to use multiple 

built-in algorithms to improve the solution. It first uses the Newton algorithm, then it is 

able to improve the solution to a high degree of accuracy by adding dummy variables to 

the equations with large residuals, then it uses other search methods (Sequential Linear 

Programming or Sequential Quadratic Programming, SLP and SQP) to improve the 
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solution further. Moreover, CONOPT is able to adjust the search step length at each 

iteration according to the result of the last iteration; this can increase the speed of 

convergence for problems whose variables have bounds. 

5. Unlike FORTRAN, CONOPT can find the solution without been given a starting point. This 

is useful when we have no idea what would be the benchmark level of the true solution 

or what are the least upper bounds and greatest lower bounds for the solution. 

However, providing bounds and good starting points, accompanied with intermediate 

variables whose initial values are also decided by the starting point can shorten the 

execution time, sometimes significantly. 

6. Solving optimization problems. At this point, we may conclude that formulating 

optimization problem in GAMS is more simper than formulating the same problems in 

FORTRAN. And as mentioned earlier, modification of the problem and carrying out 

comparative static analysis is much more straightforward in GAMS. 

In general, GAMS is more efficient if the problem can be solved by available solvers. 

Theoretically FORTRAN can do the same, but it usually needs a longer code. Even if the 

programmer is very fluent in FORTRAN, he or she has to fully understand the algorithms needed 

in order to implement it. This might be unnecessary in some cases. On the other hand, if there is 

no suitable solvers for the problem presented to us, FORTRAN gives an option. 

Table 1 and 2 below summarize the execution times under different tolerance levels and 

different starting points. 

In most cases, FORTRAN took shorter time finding a solution under a greater tolerance level and 

good starting point. However, GAMS could solve the problem even without being given an initial 

value and the solution is of a higher degree of accuracy. The time GAMS took is not very much 

longer than that taken by FORTRAN. 

Table 3 compares the features of the two programs. 

Table1 GAMS execution time and number of iterations w.r.t. different tolerance levels  
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Table2 FORTRAN execution time and number of iterations w.r.t. different tolerance levels  

 
 
 

Table3 Comparing FORTRAN and GAMS  

 

 
 

5. Appendix  

Here is a sample  FORTRAN solution log (written in txt files): 

execution@20120818   

elapsed time=       663.0 

Number of Newton-Raphson iteration= 82 

maximum absolute value of reduced gradient=   9.637E-07 

maximum absolute value of residual=   7.813E-02 

sum of maximum absolute reduced gradient=   4.034E-05 

sum of maximum absolute residuals=   7.246E-01 

tolerance     1.0E-06 
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Here is a sample of part of the GAMS output log (generated automatically, also in txt file): 

--- Executing CONOPT: elapsed 0:02:05.009 

CONOPT 3         Jul  4, 2012 23.9.1 WIN 33924.33953 VS8 x86/MS Windows        

Reading parameter(s) from 

"D:\Dropbox\Dropbox\Computing\SUBMISSION\GAMS\Data1\conopt.opt" 

>>  rtredg = 1.e-8 

Finished reading from 

"D:\Dropbox\Dropbox\Computing\SUBMISSION\GAMS\Data1\conopt.opt" 

    C O N O P T 3   version 3.15F 

    Copyright (C)   ARKI Consulting and Development A/S 

                    Bagsvaerdvej 246 A 

                    DK-2880 Bagsvaerd, Denmark 

   Iter Phase Ninf   Infeasibility   RGmax    NSB   Step InItr MX OK 

      0   0        9.5765239138E+05 (Input point) 

                                Pre-triangular equations:        0 

                                Post-triangular equations:       1 

      1   0        9.5765239138E+05 (After pre-processing) 

      2   0        1.7819838768E+02 (After scaling) 

      3   0     0  3.5298355138E+01               9.0E-01      T  T 

      4   0     1  4.2223286869E-01               9.9E-01      T  T 

      5   0     1  4.2223286869E-01               0.0E+00      T  T 

      6   0     1  3.2156527501E-02               1.0E+00      F  T 

      7   0     1  2.6773966159E-03               1.0E+00      F  T 

   Elapsed time       83.7 seconds. 

   Iter Phase Ninf   Infeasibility   RGmax    NSB   Step InItr MX OK 

      8   0     1  2.1402354826E-03               1.0E+00      F  T 
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      9   0     1  2.1289107081E-03               1.0E+00      F  T 

     10   0     1  2.1284524595E-03               1.0E+00      F  T  

 ** Feasible solution. Value of objective =   1.000000000000E-02 

   Elapsed time      121.5 seconds. 

   Iter Phase Ninf     Objective     RGmax    NSB   Step InItr MX OK 

     11   3        1.0000000000E+03 1.0E+00     1 1.0E+00    1 T  T 

     12   3        1.0000000000E+03 0.0E+00     0 

** Optimal solution. There are no superbasic variables. 

--- Restarting execution 

--- Untitled_1.gms(145) 0 Mb 

--- Reading solution for model tran 

--- Untitled_1.gms(145) 3 Mb 

*** Status: Normal completion 

--- Job Untitled_1.gms Stop 01/02/07 23:39:05 elapsed 0:04:36.593 

 

PART B 

Here is a report on some further tests of FORTRAN and GAMS.  These tests includes a) 

reformulation of the utility function and reformulating the equilibrium accordingly; b) 

change of stopping rules of the FORTRAN codes so that the error terms are measured 

in relative rather than absolute magnitudes; c) changes of data sets so that population is 

greater, income and demand for lot size are more diverse, and more realistic; d) change 

of size of the model (that is the number of model submarkets).   

The general upshot of these tests is that GAMS is more stable, more accurate, easier to 

program and modify, and able to solve the nonlinear systems without a starting point in 

my tests. However, it is slower in execution. The time it needs to solve the problem is 

longer compared with FORTRAN, and if the starting point is not good or there is no 

starting point, GAMS needs couple of hours to solve the model with size i=50, j=50, k=2. 

Another fatal shortcoming of GAMS is that the physical memory it needs to solve a large 
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model is too big which leads to fails when i>652. Lastly, although the solvers I have been 

testing are powerful, they have fewer options for users to customize. This will be 

explained with an example in part b. When i=j=50, the model also solved by PATH and 

MILES.  

FORTRAN, On the other hand, is faster during execution3, accurate enough although not 

as accurate as GAMS. With a starting point which isn’t even close to the correct solution, 

it only spent one and half minutes to solve the model with 1000 variables and 1000 

equations (i=500). Also, as opposed to GAMS, there is no memory limitation problem in 

my tests, and it is possible to trim the algorithm as needed.  But as pointed before, it is 

very likely that it takes significantly longer time for a fluent FORTRAN programmer to 

write, solve and modify a model than it does for a fluent GAMS user. 

1. Modifying the problem to be solved 

In the following tests, the indirect utility function is as follows: 

 

 

ln( ) (1 ) ln( ) ln( )
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1
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 where ijkE are the constants and ijkz  is 

the composite good whose price is 1. 

The Marshallian demand for lot size by consumer j for house type ik is: 
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

 

Equilibrium conditions for each ik: 

   ijk ijk ik ik ik

j

N h P S q r r

   

Alternatively, it can be written as: 

   (1 ) j ijk ik ik ik ik

j

N M P S q r r  r

 

                                                           
2
 According to www.gams.com, in Window 32bit version, GAMS limits itself and any solver to process 

around 1.8 GB. This limit will be reached if our model has too many variables or equations. 
3
 But it is very likely that it takes longer to write codes in FORTRAN than it does in GAMS, and this 

advantage of user friendliness of GAMS could make up for its slow execution.  

http://www.gams.com/
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In this case, the lot size demanded, ijkh , is not constant for each ik; it also depends on 

consumer’s income jM  . In solving the problem, there is no bound need to be set for ikr , 

and this improves the performance of the FORTRAN codes. 

2. Converging on relative magnitudes 

In this part I will describe the new stopping rules in the FORTRAN codes. After each 

Newton-Raphson iteration, the codes will check if: 

i) 

1

1
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k k
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where ik ikj ikj

j

D N h P   and 

ˆ
ik ik ikS S q . 

If both of the above are satisfied, the code will report results. In FORTRAN codes, 

when setting tolerance = 1e-6 and ftolerance = 1e-5, and when using different 

data sets including the one with i=500, the codes are able to solve the system in 

less than two minutes. 

As of tolerance level of GAMS, it is less straightforward to customize. For 

example, in CONOPT, there are different tolerance options been used in solving 

a model.  "retredg” is the optimality tolerance which set the maximum tolerance 

level for
ik

zr . CONOPT also has another parameter “rtnwma”. This is maximum 

feasibility4, or the maximum residual tolerance.  Since the greatest rtnwma 

acceptable to the solver is 1e-3, in all the tests I have been done, rtnwma is 

always tighter even if I set rtnwma to its maximum and retredg to its minimum. 

3. Different data 

I have tested 3 different data sets comparing FORTRAN and GAMS, each system’s 

performance is similar across different data sets5.  

                                                           
4
 A constraint will only be considered feasible if the residual is less than rtnwma times MaxJac, 

independent on the dual variable. MaxJac is an overall scaling measure for the constraints computed as 
max(1,maximal Jacobian element/100). The default value of rtnwma is 1.e-7 
5
 Each data set is generated such that there is a correct solution known to the user which if the user plug 

it into the system, it is in equilibrium. 
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For the first data set I changed population to 100,000 (originally 10,000). The second 

data set I changed income upper and lower bounds so that the income disparity across 

regions is larger. In the last data set I have changed population to 1,000,000 and kept 

the income disparity in the second data set. The following tables present results using 

previews data set and the third data set, solved in the updated model. 

Tolerance, ftolerance and rtnwma are the same as defined in part b. 

Table 4: Same data set as before. i=j=50, k=2. n=10,000.  

 

 
 
Table 5: Using the third data set. i=j=50, k=2. N=1,000,000. Income more dispersed. 

 
 

4. Larger problem size 

This part describes the tests with larger models. 

FORTRAN codes are able to solve a system with 1000 variables and 1000 equations. It 

only takes less than two minutes. 

On my computer, GAMS cannot solve the problem when i>65. GAMS will exit the 

execution during generation of the model (before solver has been invoked). Even if I 

formulate the model so that the number of variables and equations are minimized, the 

memory it takes when i>65 is still greater than 1.8 GB. Supposedly, a machine with 

larger physical memory would not have this problem and may be able to solve the model. 

The following tables summarize the information of larger models solved by FORTRAN. 

Table 6: i=100. n=1,000,000. There are 200 variables and 200 equations.  
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Table 7: i=500. n=1,000,000. There are 1000 variables and 1000 equations. 

 

 

PART C 

This part summarizes the result of another comparison in which the GAMS code is 

rewritten so that it uses the exact same algorithm and relative tolerance level as 

FORTRAN code does, and then the times needed for solving the problem with different 

starting points are recorded.  

In this comparison, a different data set is used where there are 15 zones of residence 

and 15 zones of employment, and 2 types of buildings. 

FORTRAN code is the same as before. 

GAMS code mimics the procedure of the FORTRAN code. The steps of the GAMS code 

are as follow: 
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Step 3  

Invoke solver to solve the linearized system described above. In our comparison, 

different solvers are used and times they take are recorded. 

Step 4 

Update the Jacobian elements and function values using the solution from step 3. 

Step 5 

Check convergence using relative tolerance which is the same level as in FORTRAN 

code. 

1

1

max
1

( )
2

k k

ik ik

k k

ik ik
ik

r r
tolerance

r r





 
 

 
 
   

If the above condition is satisfied, then the procedure will report result and exit; 

otherwise it will go to step 3, solve the linearized system again using updated Jacobian 

elements and function values. 

We could have used tolerances for function values too, but since the relative tolerance 

for variable is 0.1%, and this is a tighter tolerance than function value tolerance to be set 

at 0.1%, we decided to drop that tolerance for simplicity. 

Results: 

Table 8 

 

Table 8 includes the result from the above procedure as well as the result from solving 

the problem by only give GAMS the equations of equilibrium and the result from solving 

the problem using FORTRAN code. 

The purple colored part or the “User Specified Jacobians” part of the table is the result 

from implementing the procedure just described. The dark pink-yellow part is the result 

from solving the problem by only giving GAMS the equations of equilibrium then leaving 

everything to the solvers. The brighter pink part of the table is the result from solving the 

problem using FORTRAN code. 

Starting Point

solver NLP/CONOPT NLP/MILES MCP/PATH LP/Cplex NLP/CONOPT NLP/MILES

Starting Pt r(I,k)=0.001 114s 112s 112s 114s 14s 13s 0.03s

Starting Pt r(I,k)=1 99s 109s 119s 93s 14s 12s 0.03s

Starting Pt r(I,k)=3 106s 99s 101s 98s 15s 16s 0.01s

Starting Pt r(I,k)=5 95s 100s 112s 98s 38s 41s 0.01s

Starting Pt r(I,k)=10 114s 109s 133s 125s 12s 16s 0.01s

Starting Pt r(I,k)=100 165s 176s 166s 192s 10s 25s 0.03s

FORTRAN
User Specified Jacobians Direct Equilibrium Equations
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As we can see from the table, by testing different solvers, given the same relative 

tolerance level, FORTRAN program is faster than GAMS when both implement Newton-

Raphson procedure directly. But notice that even when relative tolerance in Newton-

Raphson procedure is the same, the default tolerances are used by GAMS when 

solving the linearized system. This could be one of the reasons why GAMS is slower 

than FORTRAN even was been given the Jacobian. 

Essentially, by this formulation in GAMS, it is solving a linear system by certain solver 

over and over again until the tolerance is satisfied. Previously, when we only give the 

equations of equilibrium, what GAMS does is to solve the non-linear system for just one 

time.  

Figure 1 

 

In figure 1, horizontal axis represents the starting point; vertical axis represents the time 

needed to solve the problem. Each line in the figure represents the time needed by 

certain solver/algorithm given different starting points. 

J/CONOPT means the problem is solved by CONOPT and the Jacobian is specified by 

us, as described above.  

D/CONOPT means that the problem is solved by giving only the equations of the 

equilibrium, and the solver will take care of Jacobian etc.  

Line labeled as FORTRAN, which almost overlapped with horizontal axis, represents the 

time needed by FORTRAN program to solve the problem given starting point.   

In words, we could duplicate the algorithm used by FORTRAN code in GAMS, but 

GAMS is slower. The only main difference between the two is that GAMS uses a solver 

to solve the linearized Jacobian system while FORTRAN uses a user provided 

subroutine to do that. We believe that the significant difference in time comes from here. 
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Also, by using user specified Jacobian system and implement Newton-Raphson 

procedure, GAMS is slower than that if only the original equilibrium equations were given. 

Our observation is that, By specifying Jacobian system, GAMS needs to solve a linear 

system, which is faster than solving a non-linear system, but this solving process has to 

be done many times until the tolerance is satisfied. On the other hand, if we only give the 

original equations to GAMS, it needs to solve a more complex non-linear system, but for 

just one time.  

 

PART D 

This part includes three codes. The first one is the GAMS code solving the problem by 

only giving the original equilibrium equations. The second code is the GAMS code 

solving the problem by directly specifying the Jacobian system. The last one is the 

FORTRAN code that solves the same problem. 

1. GAMS with original equilibrium equations 

 *Huibin Chang Test. Last updated 2012 Aug 14th. 

$title Direct Equilibrium Equations using MILES 

$onsymlist onsymxref 

 

SETS 

       I   zone of residence   / 1*15 / 

       J   zone of employment  / 1*15 / 

       K   type of housing     / 1*2 / ; 

 

*alias is used when formulating the equilibrium equations 

alias(i,ii) 

alias(j,jj) 

alias(k,kk); 

 

*The following part which includes $call, gdxin, load is the part import 

 

*data from excel files. 

$CALL GDXXRW.EXE m.xls par=m rng=a1:b15 rdim=1 

PARAMETERS 

       m(j)  income of each employment zone 

$GDXIN m.gdx 
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$LOAD  m 

$GDXIN 

 

$CALL GDXXRW.EXE s.xls par=s rng=a1:c16 Cdim=1 rdim=1 

PARAMETERS 

       s(i,k)  total sq. meters of each residence zone 

$GDXIN s.gdx 

$LOAD  s 

$GDXIN 

 

$CALL GDXXRW.EXE h.xls par=h rng=a1:c16 Cdim=1 rdim=1 

PARAMETERS 

       h(i,k)  unit size in sq. meters of each residence zone 

$GDXIN h.gdx 

$LOAD  h 

$GDXIN 

$CALL GDXXRW.EXE kc.xls par=kc rng=a1:c16 Cdim=1 rdim=1 

PARAMETERS 

       kc(i,k)  constants for each ik combo 

$GDXIN kc.gdx 

$LOAD  kc 

$GDXIN 

 

$CALL GDXXRW.EXE t.xls par=t rng=a1:p16 Cdim=1 rdim=1 

PARAMETERS 

       t(i,j)  travel time from zone i to zone j 

$GDXIN t.gdx 

$LOAD  t 

$GDXIN 

 

$CALL GDXXRW.EXE e.xls par=e rng=a1:ae17 rdim=1 cdim=2 

PARAMETERS 

       e(i,j,k)  constant terms for each ijk combo. e111=0 
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$GDXIN e.gdx 

$LOAD  e 

$GDXIN 

 

scalar alpha /0.6/; 

scalar beta  /-0.3/; 

scalar phi   /0.895343/; 

scalar lamda /1/; 

scalar n     /1000/; 

 

VARIABLES 

 

       r(i,k)  rent per sq.meter of each ik. To be solved.; 

r.lo(i,k) = 0.0001; 

*r.up(i,k) = 1000 

r.l(i,k)  = 10; 

*Initial value has been given 

variable 

     z    this is a dummy vairable to be maximized or minimized so that nlp can be used.; 

     z.lo = 0.01 ; 

     z.up = 1000 ; 

 

equations 

equilibrium(i,k)       all i*k submarkets are in equilibrium.; 

equilibrium(i,k)..   n*(1-alpha)*sum(j,(m(j)*(system.exp (lamda* 

             (system.log(m(j))-(1-alpha)*system.log(r(i,k))+beta*system.log(t(i,j))+e(i,j,k)))) 

             / 

(sum((ii,jj,kk), system.exp(lamda* (system.log(m(jj))- 
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             (1-alpha)*system.log(r(ii,kk))+beta*system.log(t(ii,jj))+e(ii,jj,kk))))))) 

               =e= 

               s(i,k)*r(i,k)*system.exp(phi*r(i,k)+kc(i,k))/(1+system.exp(phi*r(i,k)+kc(i,k))); 

equation 

zz   z is a dummy vairable formulated so that nlp can be used; 

zz.. z     =n= 

     sum((i,k),r(i,k))  ; 

 

OPTION RESLIM =66666; 

 option mcp=miles; 

model tran  /all/; 

tran.optfile = 1; 

SOLVE TRAN USING nlp maximizing z; 

 

 

2. GAMS with direct user specified Jacobians 

SETS 

 

       I   zone of residence   / 1*15 / 

       J   zone of employment  / 1*15 / 

      K   type of housing     / 1*2 / ; 

alias(i,ii,iii,iiii,iiiii,iiiiii) 

alias(j,jj,jjj,jjjj,jjjjj,jjjjjj) 

alias(k,kk,kkk,kkkk,kkkkk,kkkkkk); 

 

$CALL GDXXRW.EXE m.xls par=m rng=a1:b15 rdim=1 

PARAMETERS 

m(j)  income of each employment zone 

$GDXIN m.gdx 

$LOAD  m 

$GDXIN 

 

$CALL GDXXRW.EXE s.xls par=s rng=a1:c16 Cdim=1 rdim=1 

PARAMETERS 

       s(i,k)  total sq. meters of each residence zone 

$GDXIN s.gdx 

$LOAD  s 
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$GDXIN 

 

$CALL GDXXRW.EXE h.xls par=h rng=a1:c16 Cdim=1 rdim=1 

PARAMETERS 

h(i,k)  unit size in sq. meters of each residence zone 

$GDXIN h.gdx 

$LOAD  h 

$GDXIN 

 

$CALL GDXXRW.EXE kc.xls par=kc rng=a1:c16 Cdim=1 rdim=1 

PARAMETERS 

kc(i,k)  constants for each ik combo 

$GDXIN kc.gdx 

$LOAD  kc 

$GDXIN 

 

$CALL GDXXRW.EXE t.xls par=t rng=a1:p16 Cdim=1 rdim=1 

PARAMETERS 

t(i,j)  travel time from zone i to zone j 

$GDXIN t.gdx 

$LOAD  t 

$GDXIN 

 

$CALL GDXXRW.EXE e.xls par=e rng=a1:ae17 rdim=1 cdim=2 

PARAMETERS 

       e(i,j,k)  constant terms for each ijk combo. e111=0 

$GDXIN e.gdx 

$LOAD  e 

$GDXIN 

 

scalar alpha /0.6/; 

scalar beta  /-0.3/; 

scalar phi   /0.895343/; 

scalar lamda /1/; 

scalar n     /1000/; 

 

parameters 

r(i,k) initial level of rents; 
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r(i,k) = 100; 

 

variables 

 

       delta(i,k) change of r(ik) after each iteration; 

parameters 

dfdr(i,k,ii,kk); 

 

dfdr(i,k,ii,kk)=((n 

*(1-alpha)*sum(j,m(j)*( ((system.exp(lamda*(log(m(j)) - (1-alpha)*log(r(i,k)) + 

beta*log(t(i,j))+ e(i,j,k))))*lamda*(((-(1-alpha)/r(i, k))$(ord(i)=ord(ii) and 

ord(k)=ord(kk))*sum((iii,jj,kkk), (system.exp(lamda*(log(m(jj)) - (1-

alpha)*log(r(iii,kkk)) + beta*log(t(iii,jj))+ e(iii,jj,kkk))))) 

 

 

 

               -sum(jjj, (-(1-alpha)/r(ii, kk))*(system.exp(lamda*(log(m(jjj)) - (1-

alpha)*log(r(ii,kk)) + beta*log(t(ii,jjj))+ e(ii,jjj,kk))))) ))) 

               / 

               ((sum((iiii,jjjj,kkkk),(system.exp(lamda*(log(m(jjjj)) - (1-

alpha)*log(r(iiii,kkkk)) + beta*log(t(iiii,jjjj))+ e(iiii,jjjj,kkkk)))) 

                ))**2)))) 

               - 

               (s(i, k) *((system.exp(phi*r(i, k)+kc(i, k))*phi)/( (1+system.exp(phi*r(i, 

k)+kc(i, k)))**2)) *r(i,k)+s(i, k) 

               *(system.exp(phi*r(i, k)+kc(i, k))/(1+system.exp(phi*r(i, k)+kc(i, 

k)))))$(ord(i)=ord(ii) and ord(k)=ord(kk))); 

 

display dfdr; 

 

parameters 

f(i,k); 

f(i,k) = -(n*(1-alpha)*sum(jjjjj,(m(jjjjj)*( 

            (system.exp(lamda*(system.log(m(jjjjj))-(1-alpha)*system.log(r(i,k))+ 

 

beta*system.log(t(i,jjjjj))+e(i,jjjjj,k)))) 

              / 

              (sum((iiiii,jjjjjj,kkkkk), system.exp(lamda*(system.log(m(jjjjjj))- 
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(1-

alpha)*system.log(r(iiiii,kkkkk))+beta*system.log(t(iiiii,jjjjjj))+e(iiiii,jjjjjj,kkkkk)))))))) 

               - 

(s(i,k)*r(i,k)*system.exp(phi*r(i,k)+kc(i,k))/(1+system.exp(phi*r(i,k)+kc(i,k))))); 

 

display f; 

 

equations 

jacobian(i,k); 

jacobian(i,k).. 

             sum((ii,kk),(dfdr(i,k,ii,kk)*delta(ii,kk)))=e= f(i,k); 

variables 

z; 

equations 

zz; 

zz..    z =n= sum((i,k),delta(i,k)) ; 

 

model floorspace /all/; 

parameter 

value(i,k); 

parameter error(i,k); 

parameter reltol(i,k); 

          reltol(i,k)=1.e-4 ; 

parameter threshold(i,k); 

 

repeat( solve floorspace using lp minimizing z; 

        value(i,k)=r(i,k)+delta.l(i,k); 

        r(i,k)=value(i,k); 

 

        dfdr(i,k,ii,kk)=((n*(1-alpha)*sum(j,m(j)*(((system.exp(lamda*(log(m(j)) - (1-

alpha)*log(r(i,k)) + beta*log(t(i,j))+ e(i,j,k))))*lamda*(((-(1-alpha)/r(i, 

k))$(ord(i)=ord(ii) and ord(k)=ord(kk)) 

*sum((iii,jj,kkk), (system.exp(lamda*(log(m(jj)) - (1-alpha)*log(r(iii,kkk)) + 

beta*log(t(iii,jj))+ e(iii,jj,kkk))))) 

-sum(jjj, (-(1-alpha)/r(ii, kk))*(system.exp(lamda*(log(m(jjj)) - (1-

alpha)*log(r(ii,kk)) + beta*log(t(ii,jjj))+ e(ii,jjj,kk))))) ))) 

 

               / 
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               ((sum((iiii,jjjj,kkkk),(system.exp(lamda*(log(m(jjjj)) - (1-

alpha)*log(r(iiii,kkkk)) + beta*log(t(iiii,jjjj))+ e(iiii,jjjj,kkkk))))))**2)))) 

               - 

 (s(i, k)*((system.exp(phi*r(i, k)+kc(i, k))*phi)/( (1+system.exp(phi*r(i, k)+kc(i, 

k)))**2)) 

*r(i,k)+s(i, k)*(system.exp(phi*r(i, k)+kc(i, k))/(1+system.exp(phi*r(i, k)+kc(i, 

k)))))$(ord(i)=ord(ii) and ord(k)=ord(kk))); 

 

f(i,k) = -(n*(1-alpha) 

*sum(jjjjj,(m(jjjjj)*((system.exp(lamda*(system.log(m(jjjjj))-(1-

alpha)*system.log(r(i,k))+beta*system.log(t(i,jjjjj))+e(i,jjjjj,k)))) 

 

               / 

 

              (sum((iiiii,jjjjjj,kkkkk),system.exp(lamda*(system.log(m(jjjjjj))- 

(1-

alpha)*system.log(r(iiiii,kkkkk))+beta*system.log(t(iiiii,jjjjjj))+e(iiiii,jjjjjj,kkkkk)))))))) 

               -         

(s(i,k)*r(i,k)*system.exp(phi*r(i,k)+kc(i,k))/(1+system.exp(phi*r(i,k)+kc(i,k))))); 

        error(i,k)=abs(abs(delta.l(i,k))/(r(i,k)+0.5*delta.l(i,k))) ; 

loop((i,k),threshold(i,k)=reltol(i,k)-error(i,k)); 

        until(smin((i,k),threshold(i,k))>0) 

        ) ; 

display r; 

 

 

3. FORTRAN code that solves the same problem  

 

 !Huibin Chang's FORTRAN code for the test 

program main 

use globle 

implicit none 

!reading data part 

open (501, file='n.txt') 

read (501, *) n 

!open (502, file='h.txt') 

!read (502, *) h 

open (503, file='s.txt') 

read (503, *) s 

open (504, file='m.txt') 
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read (504, *) m 

open (505, file='t.txt') 

read (505, *) t 

open (506, file='e.txt') 

read (506, *) e 

open (507, file='kc.txt') 

read (507, *) kc 

open (508, file='alpha.txt') 

read (508, *) alpha 

open (509, file='beta.txt') 

read (509, *) beta 

open (510, file='phi.txt') 

read (510, *) phi 

open (511, file='lamda.txt') 

read (511, *) lamda 

!------------------------------------end of data reading 

!______This following sub block can be used to check: if the rent data that used to 

generate other data is read  

!&into the program, the procedure will converge in one iteration 

!open (511, file='checkrent.txt') 

!read (511, *) r 

!rewind 511 

!-------------------------------------------------------------------end of reading data part 

101 print *, "New attempt" 

!Generate initial guess for solution 

call random_number(randmtplr_rent)  

!forall (i=1:imax, k=1:kmax) r(i, k)=1*(randmtplr_rent(i, k))*2 

forall (i=1:imax, k=1:kmax) r(i, k)=100 

!read (511, *) r 

!rewind 511 

!forall(i=1:imax, k=1:kmax) r(i,k) = r(i,k)+0.1 

tolerance = 1.0e-2 

ftolerance = 1.0e-5 

!End of Generation initial guess------------------------------- 

!Call the subroutine for Newton Raphson Procedure 

call newtraphs(r) 

!________________This block check how close to zero is f(r(i,k)) 

forall (i=1:imax, k=1:kmax) q(i, k)=exp(phi*r(i, k)+kc(i, k))/(1+exp(phi*r(i, k)+kc(i, k))) 

forall (i=1:imax, j=1:jmax, k=1:kmax)  

u(i, j, k) = log(m(j)) - (1-alpha)*log(r(i,k)) + beta*log(t(i,j))+ e(i,j,k)  

end forall 

forall (i=1:imax, j=1:jmax, k=1:kmax)  

expu(i, j, k)=exp(lamda*u(i, j, k)) 

end forall 

sumu=sum(expu) 

forall(i=1:imax, j=1:jmax, k=1:kmax) p(i, j, k)=(expu(i, j, k))/(sumu) 
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forall (i=1:imax, j=1:jmax, k=1:kmax) pm (i,j,k) = p(i,j,k)*m(j) 

sumpmj = sum(pm, dim=2) 

forall(i=1:imax, k=1:kmax) ff(i, k)=-n*(1-alpha)*sumpmj(i, k)+s(i, k)*q(i, k)*r(i,k) 

!---------------------------------------------------------end of checking 

forall(i=1:imax, k=1:kmax) ferror(i,k)=abs(ff(i,k))/s(i,k) 

if (maxval(ferror)<ftolerance) then  

!if (maxval(abs(dd))<\tolerance) then 

print *, 'Success'  

open (998, file='Solution_Result.txt') 

write (998, *) r 

call CPU_TIME(elapsed_time) 

call DATE_AND_TIME(time) 

print *, 'iteration=', iteration 

print *, 'Solved' 

print *, 'Elapsed time=', elapsed_time 

print *, 'max abs error=', maxval(abs(dd)) 

print *, 'max abs f(r(i,k))=', maxval(abs(ff)) 

print *, 'sum of abs error=', sum(abs(dd)) 

print *, 'sum of abs f(r)', sum(abs(ff)) 

open (999, file='Solution_log.txt') 

write (999, 20) time, elapsed_time, iteration, maxval(abs(dd)), maxval(abs(ff)), 

sum(abs(dd)), sum(abs(ff)), tolerance 

20 format ( /, 'execution@', a10 /, 'elapsed time=', f12.1, /, 'Number of Newton-Raphson 

iteration=', i3 & 

& /, 'maximum absolute value of reduced gradient=', Es12.3E2/, 'maximum absolute 

value of residual=', Es12.3E2 & 

& /, 'sum of maximum absolute reduced gradient=', Es12.3E2 /, 'sum of maximum 

absolute residuals=', Es12.3E2 & 

& /, 'tolerance' Es12.1e2 /) 

else 

goto 101 

endif 

!------------------------------------------------end of checking f(r(i,k)) 

end !end of main program 

!_______________________________________________________________________

______________________ 

!_______________________________________________________________________

______________________ 

!_______________________________________________________________________

______________________ 

!Start of the NEWTON_RAPHSON Subroutine 

subroutine newtraphs(*) 

use globle 

implicit none  

!Start of the loop 

do iteration=1, 100 
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!________________This block calculate f(r(i,k)) 

forall (i=1:imax, k=1:kmax) q(i, k)=exp(phi*r(i, k)+kc(i, k))/(1+exp(phi*r(i, k)+kc(i, k))) 

forall (i=1:imax, j=1:jmax, k=1:kmax)  

u(i, j, k) = log(m(j)) - (1-alpha)*log(r(i,k)) + beta*log(t(i,j))+ e(i,j,k)  

end forall 

forall (i=1:imax, j=1:jmax, k=1:kmax)  

expu(i, j, k)=exp(lamda*u(i, j, k)) 

end forall 

sumu=sum(expu) 

forall(i=1:imax, j=1:jmax, k=1:kmax) p(i, j, k)=(expu(i, j, k))/(sumu) 

forall (i=1:imax, j=1:jmax, k=1:kmax) pm (i,j,k) = p(i,j,k)*m(j) 

sumpmj = sum(pm, dim=2) 

forall(i=1:imax, k=1:kmax) ff(i, k)=-n*(1-alpha)*sumpmj(i, k)+s(i, k)*q(i, k)*r(i,k) 

!------------------------------------------------end of calculation of f(r(i,k)) 

!____________________________________________________________________The 

following block calculate Jacobian 

!dqdr. In fact, dqdr is a matrix with dimension (imax*kmax, imax*kmax),  

!but since all the off-diagonal elements are zero), here I will treat it as a vector with 

imax*kmax elements 

!also, since the expression is too long, I will use substitutions to make it shorter 

forall (i=1:imax, k=1:kmax) dqdr(i, k)=(exp(phi*r(i, k)+kc(i, k))*phi)/((1+exp(phi*r(i, 

k)+kc(i, k)))**2) 

!end of calculation for dqdr 

forall (i=1:imax, k=1:kmax)  

dudr(i,k)=-(1-alpha)/r(i, k) 

end forall 

!end of dudr 

!dpdr 

forall (i=1:imax, j=1:jmax, k=1:kmax) x(i, j, k)=dudr(i, k)*expu(i, j, k) 

x1=sum(x, dim=2) 

!Here calculation of dpdr uses do loop might be clearer for people to read. Two cases in 

the do loop are the diagonal elements case of dpdr  

!&and offdiagonal elements case  

do k=1, kmax 

do j=1, jmax 

do i=1, imax 

do kk=1, kmax 

do ii=1, imax 

if (i.eq.ii.and.k.eq.kk) then 

dpdr(i, j, k, ii, kk)=(expu(i, j, k)*lamda*(dudr(i,k)*sumu-x1(i, k)))/(sumu**2) 

else 

dpdr(i, j, k, ii, kk)=(-expu(i, j, k)*lamda*x1(ii, kk))/(sumu**2) 

endif 

enddo 

enddo 

enddo 
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enddo 

enddo 

!end of calculation of dpdr 

!mdpdr 

forall (i=1:imax, j=1:jmax, k=1:kmax, ii=1:imax, kk=1:kmax) mdpdr(i, j, k, ii, kk) = 

m(j)*dpdr(i,j,k,ii,kk) 

!Calculate RHS of NewtonRaphson System, which is -f 

forall (i=1:imax, j=1:jmax, k=1:kmax) pm (i,j,k) = p(i,j,k)*m(j) 

sumpmj = sum(pm, dim=2) 

forall(i=1:imax, k=1:kmax) ff(i, k)=-n*(1-alpha)*sumpmj(i, k)+s(i, k)*q(i, k)*r(i,k) 

!This block read ff as a 2 dimensional array then convert it to 1 dimension RHS of the 

system to be solved, which is -f. 

open (601, file='rhs.txt') 

write (601, *) ff 

rewind 601 

open (602, file='rhs.txt') 

read (602, *) f 

rewind 602 

!end of conversion 

!This block get Jacobian 

summdpdrj=sum(mdpdr, dim=2) 

do k=1, kmax 

do j=1, jmax 

do i=1, imax 

do kk=1, kmax 

do ii=1, imax 

if (i.eq.ii.and.k.eq.kk) then 

jacjac(i, k, ii, kk)=n*(1-alpha)*summdpdrj(i, k, ii, kk)-s(i, k)*dqdr(i, k)*r(i,k)-s(i, k)*q(i, 

k) 

else 

jacjac(i, k, ii, kk)=n*(1-alpha)*summdpdrj(i, k, ii, kk) 

endif 

enddo 

enddo 

enddo 

enddo 

enddo 

!end of assignment for Jacobian 

!This block convert the five dimensional 'jacjac' to two dimensional Jacobian, which is 

the LHS of the system to be solved. 

open (603, file='jacobian.txt') 

write (603, *) jacjac 

rewind 603 

open (604, file='jacobian.txt') 

read (604, *) jacobian 

rewind 604 
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!end of conversion of Jacobian 

!-----------------------------------------------------------------------------------------------END OF 

CALCULATION OF JACOBIAN 

call mainls(jacobian, f, imax*kmax, imax*kmax) !solving the linear system, and f is 

returned as the solution. 

!this block convert the solution 'f', which is the correction of initial guess in the NR 

procedure, to  

!& a two dimensional (imax, kmax) matrix so that the update of solution can be handled. 

open (701, file='dr.txt') 

write (701, *) f 

rewind 701 

open (702, file='dr.txt') 

read (702, *) dd 

rewind 702 

!end of conversion 

!update initial guess  

forall (i=1:imax, k=1:kmax) r(i, k)=r(i, k)+dd(i, k) 

print *, 'sum of abs error=', sum(abs(dd)) 

forall(i=1:imax, k=1:kmax) error(i,k)=abs(abs(dd(i,k))/(r(i,k)+0.5*dd(i,k))) 

if (maxval(error)<tolerance) return 

enddo !end of one iteration 

end !end of subroutine NewtonRaphson Procedure 

 


