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The ݌-compact-regions problem involves the search for an aggregation of ݊ atomic spatial units 

into ݌  compact regions to fit a specific purpose. This paper reports our efforts in designing a 

specialized randomized greedy and edge-reassigning heuristic to solve the problem to near 

optimally. We apply this model to support urban economic simulation, in which activities need to be 

aggregated from the 4109 Transportation Analysis Zones (TAZs) of six southern California counties 

into 100 model zones to achieve desired computational feasibility of the economic simulation model. 

Spatial contiguity, physiography, political boundaries, the presence of local centers, and intra-zonal 

and inter-zonal traffic are considered, and efforts are made to ensure consistency of selected 

properties between the disaggregated and aggregated regions. The moment of inertia introduced in 

a novel approach to computing the compactness of the model zones was shown to be robust and 

to perform better than the familiar and often used isoperimetric quotient (IPQ). The average 

compactness of the generated model zones reached 0.89 (the theoretical upper limit is 1.00). Our 

proposed approach provides a substantial extension and a computationally efficient process as 

compared to alternative approaches such as location-allocation models, automated zonation, 

political redistricting, and patch-growing processes. A Web application was developed based on 

ArcGIS Server to allow users to view and work interactively with the optimized solution. 
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Introduction 

The p-compact-regions problem involves aggregating or combining ݊ spatially contiguous units 

into p compact regions (݌ ൑ ݊) while optimizing a defined objective function. According to the 

literatures of geography, geographic information science (GIScience), computer science, and 

regional science this type of aggregation can also be termed zonation, districting, and 

regionalization (Duque, Church, and Middleton 2011) and finds widespread application in many 

domains. In GIScience, this problem was first addressed by Openshaw (1977), in discussing the 

design of algorithms to aggregate data from small areas to larger zones, and in investigating the 

effects of such aggregations on statistical and mathematical analyses -- effects that he collectively 

termed the modifiable areal unit problem.  

        There are a substantial number of real-world problems that require solutions to p-region 

problems (problems that do not necessarily include compactness as an objective or constraint). 

For example, emergency medical service providers aim to partition a service area into zones in 

order to provide satisfactory coverage (Marianov and ReVelle 1996; Alsalloum and Rand 2006; 

Sorensen and Church 2010). In conservation planning, decision makers may want to identify 

regions that maximize the coverage of selected species (Church, Storm, and Davis 1996), perhaps 

combined with the minimization of cost (Moilanen 2007). Partitioning an area into compact 

electoral districts is an effective alternative to political gerrymandering (Young 1988; Pang et al. 

2010). In human geography, a single set of reporting zones for projects such as the census is no 

longer sufficient to meet researchers’ needs (Young, Martin, and Skinner 2009), so flexible 

aggregation has become increasingly important. For microeconomic modeling of urban land use 

and transportation, such as the project that provides the case study for this paper, it is necessary 

to aggregate economic activity in order to achieve computational feasibility, and at the same time 

to preserve certain properties between the atomic and aggregated zones (Anas and Liu 2007).  

        Over the past several decades, researchers have developed a number of methods for 

providing solutions to versions of the p-regions problem. Optimal solutions have been obtained 

using integer programming and integer goal programming to contiguous, but non-compact form. 

However, the computational complexity and the non-linear nature of “compact” versions of the p-
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region problem make it difficult to formulate and solve using general-purpose optimization software. 

This has led researchers to develop heuristic algorithms, such as greedy methods, tabu search, 

and simulated annealing. In this paper, we propose a heuristic that combines the randomized 

greedy and edge-reassignment methods to solve a large p-compact-regions problem for the 

potential application of a microeconomic model- RELU-TRAN. RELU-TRAN (Anas and Liu 2007) 

is a dynamic general-equilibrium model of a metropolitan economy and its uses of land. It 

equilibrates floor space, land and labor markets, and the market for the products of industries, 

treating development (construction and demolition), spatial interindustry linkages, commuting, and 

discretionary travel. Mode choices and equilibrium congestion on the highway network are treated 

by integrating an algorithm of stochastic user equilibrium.  

        Our goal is to aggregate the 4109 Transportation Analysis Zones (TAZs) in six counties (Los 

Angeles, Riverside, San Bernardino, Orange, Imperial, and Ventura, as Fig. 1 shows) of Southern 

California to approximately 100 model zones, the maximum number considered computationally 

feasible for subsequent work in microeconomic simulation of the region. Meanwhile, factors 

including spatial contiguity, model-zone compactness, the coincidence of model-zone boundaries 

with physiographic features and political boundaries, and the patterns of intra-zonal and inter-zonal 

traffic need to be considered. We call this problem “supreme” because while realistic it 

nevertheless requires iterative computation among more than 4000 atomic units, which is large in 

comparison with the literature on similar problems; because of the many constraints and the 

complexity of the objective function; and because several elements of the objective function are 

non-linear.  
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Figure 1. Case study for the p-compact-regions problem: grouping more than 4,000 TAZs in 6 

counties of Southern California into approximately 100 compact regions.  

        Previous studies have acknowledged the importance of compactness -- “one of the most 

intriguing and least-understood properties of geographic shapes” (Angel, Parent, and Civco 2010), 

in zoning algorithm design. Compactness is seen as desirable for two reasons: it implies maximum 

accessibility to all parts of the zone; and according to Tobler’s First Law of Geography (Tobler 

1970) a compact zone is likely to be homogeneous, sharing common attributes and properties. 

Metrics of compactness often compare a shape to a circle of the same area as the shape, on the 

grounds that a circle minimizes the sum of squared distances of all parts of its area from its 

centroid. However, many studies do not provide an explicit and quantitative measurement of 

compactness, relying instead on indirect objectives, such as minimizing travel distances within a 

zone (Wie and Chai 2004) and minimizing the perimeter lengths of zones (Fischer and Church 

2003).  

        In this paper we use an effective and quantitative measure of compactness based on the 

moment of inertia (Massam and Goodchild 1971), a quantity well-known in physics. The moment 
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of inertia of a two-dimensional body about an axis through a point and perpendicular to the body is 

defined as the second moment of the body about the point, in other words the integral over the 

body’s area of the squared distance from the point. Techniques for employing the moment of 

inertia in this way are discussed in detail below. The moment of inertia is easily calculated from the 

shape’s defining vertices, and has the advantage of being additive, so that compactness of a 

proposed aggregation can be readily calculated from properties of the building blocks.  

        In summary, our purpose in this paper is to explore various aspects of the p-compact-regions 

problem, using a real, practical example of substantial size. Rather than a one-size-fits-all solution, 

we believe that any implementation of the p-compact-regions problem must respond to the specific 

circumstances. The circumstances we explore in this paper may well be applicable more generally, 

and we believe that the experience we have gained in this project, and the solutions we have 

found to many of its issues, may provide useful guidance to others. The paper also makes a 

substantial and original contribution in the use of a compactness measure based on the moment of 

inertia of a shape about a vertical axis through its centroid. 

 

Literature  

The family of p-region problems involves the aggregation of basic spatial units into groups to meet 

a range of criteria, including maximizing both intra-group homogeneity and inter-group 

heterogeneity. Openshaw (1977) defined a general model of the zone-design process by 

aggregating n zones into p contiguous regions, where p is usually a small fraction of n. A closely 

related variant is the location-allocation problem (Goodchild 1979; Goodchild 1988), which seeks 

to locate p facilities optimally, and simultaneously to allocate distributed demand to them, forming 

p zones. Models of this type have been applied in many fields and are used to solve a variety of 

problems, ranging from public-facility location-allocation (Murray, O’Kelly, and Church 2006; 

Church and Scaparra 2007; O’Hanley and Church 2010) to business service-center allocation 

(Aboolian, Sun, and Koehler 2009).  

        Morrill (1976) proposed to use a computer-based capacity-constrained location-allocation 

model to generate equally populous congressional districts such that the aggregated travel in each 
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district to its center was minimized. The algorithm starts by manual selection of initializing point 

centers for each district. Then an application of the transportation problem is defined, to assign 

building blocks to each center such that the total distance of assignment is minimized. This results 

in a set of regions surrounding each center (though in principle a center may find itself outside its 

allocated region). The centers can now be relocated to minimize distance within each region. By 

alternating assignment (allocation) and relocation until no further changes occur, the approach 

yields compact regions of approximately equal population. This procedure is relatively simple, 

being based on straight-line travel rather than the real transportation network, and not considering 

similarity among the atomic geographic units in the aggregation process. Similar works in the 

literature include those of Mehrotra, Johnson, and Nemhauser (1998), Bozkaya, Erkut, and 

Laporte (2003), Ricca and Simeone (2008), and Altman and McDonald (2010). 

        Church et al. (2003) proposed a patch-growing process (PGP) to identify an optimum habitat 

patch for the San Joaquin kit fox. This process starts by initializing a seed cell which has a 

minimum specified suitability value. It then repeatedly calculates a composite suitability score for 

each cell, based on the number of edges that the cell shares with the current patch, and edge 

weights for each cell. At each iteration, the process tends to select the most suitable cells to add 

into the patch; therefore it can be considered a greedy algorithm. Meanwhile, by limiting the 

number of cells eligible to join the patch at any iteration, the algorithm provides a flexible strategy 

to control the growing speed. The PGP algorithm achieves a substantial improvement in 

comparison to Brookes’ (Brookes 1997) PRG (parameterized region-growing) algorithm, but it 

does not provide solutions for problems requiring the growing of multiple regions simultaneously, 

such as the problem discussed in this paper. 

        Our problem is one of zonation with multiple objectives and constraints. First, the 

compactness of the model zones should be maximized. Second, in order to achieve homogeneity, 

model zones are not allowed to cross either county boundaries or physiographic barriers. Third, 

another goal is to keep model zones from being too large as well as assisting in keeping the errors 

in modeling transportation flows on the highway network small as compared to a disaggregated 

TAZ based flow estimation. To achieve this goal, we require that intra-zonal traffic occurring within 
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each model zone be equal to or less than a certain portion (for example, 10%) of the total inter-

zonal traffic. This problem is substantially different from those described in the literature both 

conceptually and computationally, because of the large number of building blocks and zones, the 

complexity of the objective function and constraints, and the innovative approach to compactness. 

In the next sections, we formalize the model and discuss our greedy and edge-reassigning 

heuristic algorithm for solving the p-compact-regions problem.  

Problem statement and model formalization 

Our goal is to aggregate 4109 TAZs into approximately 100 model zones, the maximal number 

considered feasible for the applied urban economic model of RELU-TRAN. Conceptually, we seek 

to maximize overall compactness of the model zones and at the same time keep the spatial 

contiguity of each zone. We define a number of linear physiographic features, aligned along major 

mountain-range barriers, and constrain model zone boundaries so as not to cross these features. 

We also constrain model zones not to cross county boundaries. Using data on traffic between 

TAZs, we compute intra-zonal and inter-zonal traffic and constrain the solutions such that intra-

zonal traffic is less than or equal to a defined proportion of total traffic. Traffic is measured by the 

total number of zone-to-zone trips in multiple modes, such as drive-alone trips, shared-ride trips, 

etc. We also identify a set of economic subcenters (large shopping centers and large 

concentrations of employment) by manual inspection, and constrain the solution so that 

subcenters are not split between zones (see Section “Selection of seeds”). To formulate the p-

compact-regions problem, consider the following problem parameters: 

i , j : Index of units which are either subcenters (a small aggregation of TAZs) or     

independent TAZs (TAZs not part of a subcenter) 

k : Index of zones 

        u : Index of zones 

        ,i jt : Traffic between unit i and unit j ; 

        iCty : The county that unit i belongs to; 

        ( )i ij ji
j

A t t  : iA is the traffic between unit i and all other units; 
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        {( , ) |PS i j  unit i  and unit j are separated by a physiographic boundary} ; 

        { |S i i  is a subcenter unit and not an independent TAZ} ; 

The decision variables are: 

        ,

1,  if unit  is assign to zone 

0,  if noti u

i u
X


 


 

        , ,

1,  if both  and  are assigned to zone 

0,  if noti j u

i j u
T


 


 

Consequently, can define the model as follows: 

       Maximize: 

2

2
k

k G
k k k

A
C

I
  (1)

       Subject to: 

, , , ,1i u j u i j uX X T    (2)

, , 1i u j uX X  , for , and for ( , )u i j PS  
 (3)

, ,,  for , , where 1i j i u j uCty Cty i j X X   
 (4)

, , , ,i j i j u i i u
i j i

t T A X   (5)

, , 1i u j uX X  , for ,i j S 
 (6)

The objective function (1) aims to maximize the overall compactness of all model zones.  

Compactness of a model zone k is measured by the moment of inertia Ik
G, defined as the second 

moment of the zone about an axis perpendicular to it and passing through its centroid G: 


kA

G
k dadI 2

 (7)

        where ݀ܽ is an infinitesimal part of the area and d is the distance from ݀ܽ to G. It can be 

shown that the moment of inertia of a circle of area A about its centroid is A2/2π. Thus our 

measure of compactness of model zone k is: 
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G
k

k
k I

A
C

2

2

  (8) 

        and ranges from 0 in the case of an infinitely extended shape to 1 in the case of the most 

compact figure, a circle. Further details on the calculation of compactness of model zones are 

included in Section “Compactness measure”.  

        Constraint (2) is always true given the above definition. Inequation (3) is used to formulate the 

physiography constraint and equation (4) with conditions defines the county boundary constraint.  

Constraint (5) limits the fraction of traffic that is intra-zonal to be less than or equal to a fraction 

of the zone’s total intra- and inter-zonal traffic. We elaborate on this constraint below in Section 

“Modeling zonal traffic”. Inequation (6) formulates the subcenter constraint. 

Methodological framework for the model 

In order to find a near-optimal solution to the p-compact-regions problem, we propose a method 

based on the combined use of a novel form of randomized greedy and edge-reassigning 

algorithms. Due to the nature of the objective and constraints, there is a need to tailor and address 

the following issues when implementing the region-growing procedure. First, our initial condition, 

dictated by the need to solve a massive equilibrium model, is 100 manually selected seed TAZs 

(the selection procedure is discussed in detail in Section “Selection of seeds”), and the purpose of 

the greedy algorithm is to assign all the other TAZs in our study area into the 100 zones with the 

strict restriction that each TAZ can only be assigned to one model zone. Second, at each iteration 

only one TAZ will be assigned to a model zone, meaning that only one model zone has a chance 

to grow in a given iteration. The TAZ that is assigned must lead to an improvement in the objective 

function that is at or close to the greatest possible improvement in that iteration. Always choosing 

the greatest improvement may not yield a good final solution. However, introducing a probabilistic 

selection strategy, such as randomly selecting one of the best N choices, will generally lead to a 

better solution if the procedure is executed a large number of times. To support this, the algorithm 

should maintain a candidate list that saves the best N choices for each of the model zones.  

        Third, before the assignment of any TAZ is complete, the objective function of each model 

zone must be updated if the availability of a TAZ is changed. Note that instead of updating the 
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status of all model zones after a TAZ is assigned, only the model zones that are affected need to 

be updated. For example, when TAZ ݅ is assigned at an iteration, the status of the model zone to 

which it is assigned must be updated, by recalculating the objective, the quantitative value for each 

constraint, and the objective function. In addition, the algorithm needs to identify new candidate 

TAZs that can improve composite objective function of the model zone. Other model zones that 

may be affected are those that already specify TAZ ݅ in their candidate lists. For such zones, if 

TAZ ݅ becomes unavailable, another candidate TAZ should be identified to replace it in the zone’s 

candidate list (if any are adjacent and unassigned).  

         Finally, as the greedy algorithm does not include backtracking from a suboptimal solution 

after the assignment of all the TAZs is completed, we introduce an edge-reassigning algorithm to 

examine each TAZ that lies at the edge of a model zone, and to evaluate moving it from its current 

model zone to the one across the edge/boundary, if the objective function sum over all model 

zones is thereby improved and if no constraints are violated. The procedure will cease when no 

further improvement can be obtained by edge reassignment. 

        Fig. 2 shows the greedy algorithm for constructing initial model zones (MZs) in the form of 

pseudo code. Before explaining the design of the heuristic algorithm, it is necessary to introduce 

the following important data structures used in the algorithms: 

(1) M:   A HashMap of TAZ-TAZ adjacency: records all the spatially adjacent TAZs of each 

TAZ, indexed by the ID of each TAZ. Length(M)=4109;  

(2) ZstateProperties: A two-dimensional array maintaining the status information of partial 

solutions for each model zone. The size of the first dimension of the array is 100, equaling 

the number of model zones to be produced; the size of the second dimension of the array 

is 8, which includes the greedy function, area, perimeter, moment of inertia, x and y 

coordinates of the centroid, and intra-zonal and inter-zonal traffic of the model zone. 

(3) roundGreedyParameter: A three-dimensional array maintaining the new status of each 

model zone if any of the N TAZs that would provide the N best improvements to the 

objective function were added to the zone. The size of the first dimension is 100, the 

number of model zones to be produced. The size of the second dimension is N, and the 
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third dimension is defined by the properties of the model zones. Besides the eight 

properties mentioned in (2), one other item is saved: the ID of the TAZ to be potentially 

added. Note that the TAZ must be currently unassigned to be considered as a candidate. 

A list is built to save the TAZs that are already assigned. Both roundGreedyParameter and 

ZstateProperties include the status information of model zones; the difference is that 

roundGreedyParameter contains the possible future states of a model zone and 

ZstateProperties contains the current state of a model zone. 

 

Figure 2. Greedy algorithm 

        As Fig. 2 shows, the algorithm starts by designating one or more TAZs as the seeds for 

growing the 100 model zones (the selection of seeds is discussed in Section “Selection of seeds”). 

As the model zones grow, the status information, such as area, centroid, and moment of inertia, is 
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updated. Areas and the coordinates of the centroids are used to calculate the moments of inertia 

of model zones, as discussed in the section titled “Compactness measure”.  

        To ensure that all model zones grow initially to a viable size, we first deal a fixed number K of 

TAZs to each zone, selecting them on the basis of the objective function. We call this “dealing,” as 

it involves something akin to a card dealer in poker, where the dealer deals in a clockwise fashion 

1 card to each player for a set size of the card hand. Here, we “deal’ one of the best TAZs to a 

seed, and continue dealing until each seed has one of the best neighboring TAZs assigned to it. 

We then “deal” out a second set of TAZs, a third set, etc. until each seed cluster has a size of K+1 

units (K assigned TAZs plus the original seed unit). In our study we set the number of TAZs dealt 

in this way to K=10, thus accounting for roughly a quarter of all TAZs assigned. Without this 

dealing step, some model zones may fail to grow beyond two or three TAZs if adding another TAZ 

will decrease rather than increase the objective function. We suggest that some experimentation 

with K may be needed in other applications of this heuristic if the values of n and p are significantly 

different from those in our study. This dealing step is deceptively simple, but extraordinarily 

powerful, as a model zone is quite awkward in size and shape when it contains only 2 or 3 TAZs, 

and adding a TAZ at this point often makes a cluster less compact rather than more compact. But, 

allowing all zones to grow (by adding TAZs) beyond an “awkward” shape helps to tune the 

heuristic towards generating a high percentage of compact zones.  

        After the dealing step, the randomized greedy algorithm is applied globally over the 100 

model zones. For each model zone, the N best plans for adding a TAZ are selected by looking at 

all possible TAZs that can be added. One of the N is then randomly selected. At this point, a TAZ 

may be eligible to be added to several different model zones. After the plans for all of the model 

zones are identified, the model zone with the best objective improvement is given the chance to 

grow. Note each Zone has a selected candidate, but that candidate was one of the N best 

possibilities. This means that there is a degree of randomness associated with which TAZ that will 

be added to a zone, and which zone will be selected for the next assigned TAZ. This is a form of 

randomized adaptive search. After adding the selected TAZ, the plans for the other model zones 

are updated as necessary.   
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Figure 3. Edge-reassigning algorithm 

        As the greedy algorithm does not include backtracking to find a global optimal solution, the 

result may only be a suboptimal solution. To overcome this limitation, the edge-reassigning 

algorithm (as Fig. 3 shows) is designed to tune the results. The input of the edge-reassigning 

algorithm is the zone partition plan obtained from the greedy algorithm. A number of variables are 

reserved, such as the TAZs assigned to a model zone, and the current objective values and other 

properties of the model zones. Each TAZ is then examined in turn and compared to its adjacent 

TAZs. If at least one of its adjacent TAZs is assigned to a different model zone, then the TAZ is 

identified as an edge TAZ and becomes a candidate for reassignment. In order for each model 

zone to have an equal opportunity to grow, the sequence for checking potential reassignments of 

edge TAZs is randomized. If moving an edge TAZ from its current model zone ܼܯ௞ to the adjacent 

model zone ܼܯ௨	 improves the overall objective, then this TAZ is removed from ܼܯ௞  and 

reassigned to ܼܯ௨ . The mathematical expression to decide whether the overall objective 

increases or not is as shown in Eq. (9). Let ܱሺܼܯ௞ሻ, ܱሺܼܯ௨ሻ, and ܱ_݊݁ݓሺܼܯ௞ሻ, ܱ_݊݁ݓሺܼܯ௨ሻ be 
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the contributions of ܼܯ௞  and ܼܯ௨  before and after edge reassignment respectively. Then 

reassignment is made if:  

( ) ( ) _ ( ) _ ( )uk k uO MZ O MZ O new MZ O new MZ    (9)

and if the reassignment will not violate any of the constraints. This process is repeated until no 

further improvement can be obtained.  

        In the greedy algorithm, the TAZ that is added to a model zone is selected from a pool of all 

the unassigned TAZs adjacent to the model zone. Therefore, contiguity of model zones is 

preserved without the need for a specific strategy. In the edge-assigning process, however, 

removing one TAZ from a model zone may potentially violate the contiguity constraint by leaving a 

residual zone that is split into two unconnected parts. To address this issue, we could check 

whether there is a path between any of the TAZ pairs in the model zone, but this would be a very 

time-consuming process. The strategy we use here is to select one TAZ within a model zone, and 

to find its adjacent TAZs within the same zone until no more TAZs can be added. If the size of the 

identified TAZ set is less than the size of the model zone, it means there are one or more TAZs 

that are not reachable after the edge reassignment. Therefore, the edge TAZ cannot be 

reassigned. 

Implementation of the computational model 

In this section, we will discuss in detail how the objective and constraints of the model are 

computed quantitatively.    

 Selection of seeds 

The seeds are the starting points for growing model zones. As noted earlier, we define a set of 

subcenters, which are areas where the employment concentration is relatively high (McDonald 

1987). In this paper, these employment subcenters are contiguous (not necessarily compact) 

areas composed of TAZs, as shown in Fig. 4(a) and (b). Based on Giuliano and Small’s procedure 

(1991), 51 subcenters are identified in our study area, including 19 in Los Angeles, 11 in Riverside, 

10 in Orange, 6 in San Bernardino, 4 in Imperial, and 1 in Ventura Counties. One of the constraints 

is that one subcenter cannot be assigned to more than one model zone, and one model zone 
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cannot contain more than one subcenter. Therefore, the subcenter itself can be a natural seed. As 

we need 100 model zones in total, another 49 TAZs are selected manually as the supplemental 

seeds to the existing subcenter seeds. To select these supplemental seed TAZs we first identified 

junctions in the major-highway network, which tend to be more frequent in areas of high population 

density. We also selected some points arbitrarily in order to augment the subcenters and major-

highway junctions. Although some of the seed TAZs are selected manually, they serve only to 

initialize the growth of model zones. During the edge-reassigning process, these TAZs can be 

swapped out of the original model zone and therefore will not have a great effect on the final result.  

 

Figure 4(a). Seed TAZs in Ventura, Los Angeles, and Orange Counties. 
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Figure 4(b). Seed TAZs in San Bernardino, Riverside, and Imperial Counties. 

 Compactness measure 

The computation of moment of inertia includes four parts: (1) moment of inertia of 4109 TAZ 

shapes, computed about the shape’s centroids; (2) moment of inertia of a model zone, computed 

from its constituent TAZs; (3) the change in moment of inertia of a model zone when a new TAZ is 

added during the dealing and randomized greedy algorithms; and (4) the change of this property 

when a TAZ is detached during the edge-reassignment phase.  

        Moment of inertia is minimal about the centroid, by definition. Therefore, to compute the 

moment of inertia for each TAZ i it is necessary to compute the coordinates of its centroid g: 

i

i
g i i

a

x xda a   (10)

i

i
g i i

a

y yda a   (11)
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        where ݔ in (10) is the coordinate of ݀ܽ and ܽ	is the area’s measure, and similarity for (11). To 

compute these properties it is necessary to represent the area as a polygon, and to partition the 

polygon into primitive elements for which calculation of moments of inertia and centroids is simple. 

The properties of these primitive elements can then be combined using straightforward principles. 

In the literature (Massam and Goodchild, 1971), triangles were used as the primitive elements. 

However, the triangle method is tricky for this study because there is no simple, obvious, and 

robust way to divide the TAZ polygons into triangles uniquely. Instead, we use a trapezium-based 

strategy for computing a polygon’s moment of inertia. As the Fig. 5 shows, for any adjacent pair of  

                           

 

Figure 5. A polygon with points defined clockwise, showing the trapezia generated from two of its 
segments. 

vertices, such as the segment ൫ݔ௜,ݕ௜൯ to	൫ݔ௜ାଵ,ݕ௜ାଵ൯, when dropping perpendiculars to the ݔ axis, a 

trapezium is formed with two vertical sides, one horizontal side, and one diagonal side. The 

calculation of moment of inertia of the trapezium T formed from segment ൫ݔ௜,ݕ௜൯	to	൫ݔ௜ାଵ,ݕ௜ାଵ൯, 

about its centroid, can be reduced to calculating the sum of the moments for the triangle part (D) 

and the rectangle part (R) about their respective centroids, and then combining them appropriately. 

Mathematically, it can be expressed as:  

22
RTRDTDRDT dadaIII   (12)
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RDT aaa   (13)

 12 / 3D i ix x x    (14)

 12 / 3D i iy y y    (15)

   2 2

1 1 / 18D i i iD iI x x ya y 
       (16)

 1 / 2R i ix x x    (17)

/ 2R iy y  (18)

 2 2
1 /12R R i i iI a x x y

      (19)

  TRRDDT axaxax 
 

(20)

  TRRDDT ayayay   (21)

 where I  denotes the moment of inertia of a shape about its centroid, a denotes the area of the 

shape, x and y denote the coordinates of the shape’s centroid, and d denotes the distance 

between two centroids. The calculation of the moment of inertia and area for the whole polygonal 

area requires adding trapezia covering the inside of the polygon (such as ଵܶ) and subtracting the 

trapezium pieces that lie outside of the polygon, such as ଶܶ. Note that the calculations of centroids 

and moment of inertia in Equations (14)-(19) are for trapezia covering the inside of the polygon 

(such as ଵܶ). For calculating trapeze lying outside of the polygon, the subscripts 1i and i should 

be exchanged. 

1 2 1 1 2 2

2 2
T T T T T T T T TI I I a d a d     (22)

1 2T T Ta a a 
 

(23)

 
1 1 2 2T T T T T Tx a x a x a   (24)

 
1 1 2 2T T T T T Ty a y a y a 

 
(25)
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In the computer implementation, a rule needs to be defined to determine which trapezia fall 

inside the polygon area and which fall outside. For a clockwise polygon, such as the one shown in 

Fig. 5, the trapezium should be added when ݔ௜ାଵ ൒ ௜ାଵݔ ௜ and should be subtracted whenݔ ൏  .௜ݔ

For a counterclockwise polygon, the opposite applies. In this way, the moment of inertia of any 

regular polygon can be computed. In our study, the point arrays of each TAZ shape are read and 

the initial moment of inertia of TAZs is computed and obtained from the above equations. 

Meanwhile, Equations (22) - (25) can be used for calculating the variation of moment of inertia 

when attaching a TAZ to a model zone in the greedy phase and detaching a TAZ from a model 

zone in both greedy and edge-reassigning phases. Whenever the shape of a model zone is 

changed, the moment of inertia is recalculated. Then by substituting this value in Eq. (1), the 

shape index is obtained.  

 County boundaries and physiographic features 

 

Figure 6. Physiographic features and county boundaries 
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One of the constraints in this optimization model is that the model zone cannot cross county 

boundaries or physiographic barriers. As shown in Fig. 6, TAZs are partitioned within counties, 

therefore, no single TAZ crosses a county boundary. To force model zones not to cross county 

boundaries, a topological analysis of (TAZ, County) containment was conducted and a hash-table 

was established with the ID of the TAZ as the key and the county that it belongs to as the value. 

Physiographic features act as natural boundaries for model zones as well, since it makes little 

sense that a local zone or gained for the purposes of modeling land use, economic, and 

transportation planning have a mountain range running through it as compared to forming a 

boundary on a side.  In this project, two ranges of mountains in Southern California are identified 

as physiographic barriers: the Northern Peninsular Mountain range and the Santa Monica 

Mountains. The Northern Peninsular Mountain range crosses four counties and forms closed 

boundaries with county boundaries, dividing the four counties into sub-counties. Since neither 

county boundary nor physiographic boundary can be crossed, the values in the hash-table can be 

defined as sub-county codes instead of the original county codes. When a candidate TAZ is 

selected to be added to a model zone, the sub-county code will be fetched from the hash-table 

lookup. If this TAZ is not in the same sub-county as all the other TAZs in the model zone, this TAZ 

will be disregarded for consideration in adding to that zone.  

        The Santa Monica Mountain barrier requires a different approach since it does not form a 

closed boundary with county boundaries (specifically Los Angeles County). To incorporate this 

physiographic barrier into the zoning process, conflict groups were constructed of TAZs that 

cannot be assigned to the same model zone because they fall on opposite sides of the 

physiographic barrier. Each time a TAZ is considered for assignment to a model zone, the 

program will check whether it has conflict with any TAZ that has already been included in the 

model zone. The above strategy guarantees that both county boundary and physiographic feature 

constraints are satisfied. 

 Modeling zonal traffic 

To restrict the size of each model zone and to keep the errors in modeling transporation flows on 

the highway network small enough, the intra-zonal and inter-zonal traffic are considered. Define 
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MZk  as the set of TAZs comprising model zone k. Let tij denote the traffic observed between TAZ i 

and TAZ j (we discuss the nature and source of such data below). Finally, let Ak represent the 

intra-zonal traffic in model zone k, Bk represent the inter-zonal traffic into and out of zone k, and αik 

represent the increase of intra-zonal traffic by adding TAZ i	to zone k: 

 
 


k kMZi MZj

ijk tA  
(26)

  
 


k kMZi MZj

jiijk ttB
 (27)

 Our goal is to limit the ratio between intra-zonal trips and the sum of intra- and inter-zonal trips to 

be less than or equal to a threshold θ, that is: 

   kkk BAA
 

(28)

        The assumed value of θ is 0.1. When all the model zones reach this intra-zonal to inter-zonal 

traffic limit but there are still some TAZs unassigned, θ is automatically increased by 0.05. This 

operation is repeated until all the TAZs are assigned. To calculate variables Ak and Bk, a TAZ by 

TAZ origin-destination matrix containing the number of trips between each pair of TAZs was 

obtained from the Southern California Association of Governments.  

Experiments 

The above section discussed the computational issues of implementing the zoning process. In the 

next section, we describe several experiments to explore variations of these methods and to 

assess their effectiveness in solving the zoning problem.  

 Randomized greedy vs. greedy heuristics 

Fig. 7 shows the distribution of average compactness of the generated model zones over 333 runs. 

The difference of the average compactness is caused by the random choices of which model zone 

should grow. At each step, the candidate TAZ to attach to each model zone is randomly selected 

from the N best candidates (N=3) TAZs which most improve the compactness of the model zone. 

The model zone with the most potential improvement over the 100 model zones will be selected to 

grow at the step. Out of the 333 runs, in 171 (51.4%) the average compactness of the generated 

model zones is improved (closer to 1) compared to that generated from the non-randomized 
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procedure The poorest average compactness (77.8) was obtained from the 94th run and the best 

(82.1) from the 264th run. Clearly multiple runs with the randomized greedy procedure are capable 

of yielding a solution that is closer to the global optimum. 

 

Figure 7. The distribution of average compactness for 333 runs of the randomized greedy 
heuristic 

 Comparison of compactness measures  

This section compares the average compactness of model zones using the moment of inertia 

introduced in this paper and that obtained using a popular compactness measure, the 

isoperimetric quotient (IPQ; Osserman, 1978). Mathematically, the objective changes to: 

2

4 k

k k

A
Max

P


 

(29)

 where Ak is the area of MZk and Pk is its perimeter. In principle, the IPQ suffers from the well-

known bias introduced by estimating the lengths of real geographic curves from the lengths of their 

polyline representations (Longley et al. 2010). Moreover the moment of inertia is directly related to 

the average accessibility of the entire area, rather than the geometry of its perimeter. The contrast 

between the two measures is most obvious when a roughly circular area that nevertheless has a 

long, undulating perimeter several times as long as the perimeter of a circle is compared to a long, 
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thin area. The IPQ can return similar values in these two cases, whereas the moment of inertia will 

be very different, indicating the marked difference in accessibility and circularity of the two cases.  

        We ran the randomized greedy algorithm 333 times using the IPQ (Fig. 8) and moment of 

inertia (Fig. 9) as compactness measures from the same set of seed TAZs and compared the best 

result from the 333 runs. Intuitively, the model zones produced by the proposed compactness 

measure are much rounder in shape and insensitive to the detailed form of the edge. By 

calculating the shape index (using moment of inertia), the averaged compactness of model zones 

using IPQ is 0.711, which is 0.10 less than that obtained by using the proposed moment of inertia.  

 

Figure 8. Zoning result using IPQ as the compactness measure 
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Figure 9. Zoning result using moment of inertia as the compactness measure 

 Improvement due to the edge-reassigning strategy 

We compared solutions with (Fig. 10) and without (Fig. 9) the edge-reassigning component of the 

heuristic. In 333 runs we found an improvement in average compactness of 8.7%, to 0.893. The 

maximum increase in compactness for a single model zone was 0.60, and the minimum -.06. We 

conclude that edge reassignment provides a substantial improvement in the heuristic. 
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Figure 10. Edge-reassignment improvement to the result shown in Fig. 9 

Conclusion and Discussion 

This paper presents an approach to solving the p-compact-regions problem using heuristic 

methods. We introduced the model and the computational issues for objectives and constraints, 

and proved the advantages of the proposed randomized greedy and edge-reassignment algorithm 

through a number of experiments using a large and real case study motivated by the need to 

model the economy of six counties in Southern California. 

        Measuring compactness with the moment of inertia provides clear advantages over the more 

traditional IPQ. In the Section “Compactness measure” we provided the essential equations 

needed to compute the measure for aggregate areas, based on the properties of constituent 

building blocks. These equations demonstrate the additive nature of the measure, which makes it 

especially convenient for applications of this nature. We showed how the measure provides a 

substantial visual improvement in compactness for the case study as well. 
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        As we noted at the outset, we do not believe a one-size-fits-all approach is suited to real-

world applications of the p-compact-regions problem. Applications will vary in the number and 

nature of the constraints, the computational issues raised by the size of the problem, and the 

geography of the application area. Instead, we argue that by investigating a large, real problem we 

have been able to explore many of the issues that will arise, in varying combinations, in finding 

practical solutions to the problem. 

        More specifically, our approach requires the problem-solver to experiment with a number of 

parameters. The number K of building blocks added to each seed during the dealing phase of the 

algorithm is one such parameter; in this project we found that setting it so that approximately 25% 

of building blocks were dealt provided acceptable results. Similarly the number N of candidate 

building blocks maintained during the greedy phase, and randomly assigned, is under user control. 

We found that N=10 gave acceptable results. The number of runs of randomized assignment is 

also user-controlled, and in our case taking the best of 333 runs provided a substantial 

improvement. Finally, we defined a parameter θ to define the threshold of the traffic constraint, 

setting it to 0.10 and increasing it by increments of 0.05. Again, users might experiment with this 

parameter and its effects on the growth of model zones. 

        The RELU-TRAN project is still under development, this generation of model zones being one 

of the first stages in a multi-year project. At this time the modelers in the research team are 

satisfied with the model zones, finding on detailed inspection that they satisfy all of the 

requirements both in principle, in terms of the objectives and constraints, and in practice in terms 

of the detailed positioning of zone boundaries. The project will now proceed to the next steps of 

model calibration and application. 
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