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1 Introduction

Our overall aim in this part of the project is to estimate the aggregate floor area by land

use and model zone for the Greater Los Angeles Metropolitan Area. The database was compiled

by the Southern California Association of Governments from the assessment records provided

by six counties (Imperial, Los Angeles, Orange, Riverside, San Bernardino, and Ventura), and

contains records for some 5 million parcels. Each assessment record for a non-vacant parcel is

supposed to contain the floor area of the structure(s) on the parcel. Unfortunately, this datum is

recorded as either zero or blank for over one million parcels. The incidence of zeroes and blanks

differs across land use and county. Collecting floor-area data on over one million parcels would

be prohibitively expensive. Instead, floor area data will be collected for only a sample of parcels,

with the floor area of the other parcels being imputed on the basis of the sample data.

The aim of this technical report is to propose a strategy for sampling “zero” and “blank”

parcels with the object of imputing floor areas to all zero or blank parcels. Since some of the

parcels are vacant, this entails imputing the status of “developed” or “vacant” to each of the

“zero” or “blank” parcels, and then imputing a floor area to those parcels imputed as being

developed. A sample datum is a satellite photograph, from which both development status

and the length and width of buildings can be estimated, perhaps supplemented by a Google

streetview photograph, from which the height of the buildings can be estimated. The strategy

aims to maximize the accuracy of the imputed floor areas, subject to a time/budget constraint.

The UCSB team previously did some ground truth tracking of the floor areas of zero and

blank parcels in Riverside and Orange Counties. A sample datum is a satellite photograph of

the parcel, from which development status can be ascertained. They used a random sampling

method, with the more limited objective of finding out which of the parcels are developed. On the

basis of the sample, Gu and Arnott (2011) statistically imputed “developed” or “vacant” status to
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all the zero and blank parcels in the Los Angeles area (assuming that the statistical relationship

estimated for Riverside County holds too in San Bernardino County, and that the statistical

relationship estimated for Orange County holds too in Los Angeles and Ventura Counties).

2 Selective review of the literature

2.1 General principle of sampling design

Generally in statistics, one basic goal is to get the precise estimates for the parameters. Sam-

pling design is not an exception either. Every sample design is associated with the cost of the

sampling/survey and the precision (measured in terms of variance of the sampling parameters).

The designs should be practical in the sense that it is possible to carry it through according to

desired specifications. Out of all these designs, the one to be preferred is that which gives the

highest precision for a given cost of the survey or the minimum cost for a specified level of preci-

sion. Statistically, high precision to a parameter means small variance to the parameter. So one

major task in sampling design is to minimize the variance of the parameter under a given cost

of survey/sampling (see, for example, Diggle and Lophaven (2006); Rao (1979); Smith (1988)).

The aim of a sample survey is to estimate the unknown population parameters like to-

tal/aggregate, ratio, median or mean based on a random sample drawn by some specified rules

from the given population. In a sampling design, one pursues reduction in cost, greater speed,

wider scope, higher accuracy, and the quantification of the uncertainty, i.e., the error. Therefore,

sometimes in a sampling design, one tries to maximize the sample variance and minimize the

sample size, etc., e.g. in the spatial sampling design (Kumar, 2009). These are some other

principles in sampling designs.

2.2 Sampling design with missing data

Generally, a sampling scheme includes the following several aspects:

1. Identify the target area, variables in the design, and the accuracy required;
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2. Consider the constraints from the following concerns: financial, logistical, operational etc.;

3. Set up the sampling design which includes determining number of samples etc.;

4. Decide method of taking samples including the following aspects: optimal time, size, de-

vices etc.;

5. Write the protocols for data recording and fieldwork;

6. Propose the methods of statistical analysis.

For missing data problem in sampling design, the modification usually exists in the last step –

methods of statistical analysis. In the statistical analysis of sampling design with missing data

(the missing data appears in the sample that one gets from the sampling), one approach to

handle such nonresponse is imputation of the missing data (Gao and Hui, 2000; Reiter et al.,

2006; Rubin, 1987).

2.3 Spatial sampling design (with presence of spatial autocorrelation)

Spatial sampling design is one special design in sampling studies. Spatial sampling involves

determining a limited number of locations in geographic space for faithfully measuring phenom-

ena etc. Basic spatial sampling schemes include random, clustered and systematic which are the

classic probability sampling methods. These basic schemes can be applied at multiple levels in

a designated spatial hierarchy. It is also possible to exploit ancillary data, for example, using

property values as a guide in a spatial sampling scheme to measure educational attainment and

income. Spatial models such as autocorrelation statistics, regression and interpolation could also

dictate sample design. Kumar (2009) presented two principles related to spatial sampling design

– maximizing variance and minimizing sample size. Our project involves spatial autocorrelation,

therefore we will describe how the spatial sampling design can be modified by the presence of

spatial autocorrelation with an example from Kumar (2009).

The design of Kumar (2009) is a model based spatial sampling design. Model based design

(Hansen et al., 1983) consists of an evaluated quantity or an objective function (e.g. sample
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variance) under an assumed population model, and a sampling plan that each sample is selected

with the probability to optimize the quantity or the objective function (e.g. maximizing the

sample variance).

In Kumar’s method, preliminary estimates of spatial variance need to be calculated to iden-

tify sample locations. The local semivariance 1 is calculated as below

r̂i =
1

k

k∑
j=1

(zi − zj)2
i 6=j,dij≤h

(1)

where k is the number of neighbors around ith candidate within distance range h, zi is the

variable of interest at the location i, it can be air pollution concentration, or whatever we are

interested in, dij is the distance from location i to location j, and it is bounded by some distance

range h when one calculates the local semivariance.

After the preliminary estimation of variance, Kumar (2009) tries to determine the sample

size which requires the estimates of variance σ2
z . Without considering the spatial autocorrelation,

the variance σ2
z may be overestimated. After Kumar (2009) takes the spatial autocorrelation

into consideration, the formula of σ2
z is revised as:

σ2 =
1∑N

i=1

∑k
j=1 ∀ij

N∑
i=1

k∑
j=1

(zi − zj)2∀ij (2)

where ∀ij = 0 if dij < h. Therefore, we can see that the modification exists in the formulas

during the procedures of the spatial sampling designs when one considers spatial autocorrelations.

Kumar (2009) further proposed an optimal network method to identify the optimal locations as

the final step in their spatial sampling design where the spatial autocorrelation also influenced

the design. We will not state the details here.

1Semivariance is a widely used concept in spatial statistics. The total semivariance over the entire study
(without the control for spatial autocorrelation) is defined as r =

∑K
k=1

∑
l 6=k(zk − zl)

2. Let σ2 =
∑K

k=1(zk −
z̄)2/(K − 1) denote the sample variance. It can be shown that the average semivariance and the sample variance
are about equal, i.e., maximizing semivariance of Z by selecting n sample locations, we also maximize sample
variance σ2.
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2.4 Statistical packages for sample design procedures

There have been numerous packages/softwares to implement sampling design procedures

and post analysis, such as SAS, R, SPSS, STATA Minitab. Lohr (1999) gave a short review

on the sampling packages/softwares. The website www.hcp.med.harvard.edu/statistics/survey-

soft/ provides an up-to-date overview of these programs.

In statistics, the major packages/softwares used in sampling designs are SAS and R. SAS

mainly provides five procedures to do the sampling design – PROC SURVEYSELECT, PROC

SURVEYMEANS, PROC SURVEYREG, PROC SURVEYLOGISTIC, and PROC SURVEYFREQ.

In R, there are two major packages for sampling design – “survey” and “sampling”. Both these

two packages have some build-in functions to do the survey/sampling designs. For example,

one can use “balancedcluster” to select a balanced cluster sample with the package “sampling”.

With the package “Survey”, one can use function “twophase” to design a two-phase sampling.

3 Two proposed methods

3.1 Descriptions of the two methods

3.1.1 Two-step adaptive spatial sampling design

We propose two sampling design here. The first one is a two-step sampling design. The

sampling frame is all the parcels with zero/blank floor area which we are interested in. Below is

a detailed description of this design.

In the first step, we will determine the sample size n with buget constraint B by n× t ≤ B,

where t is the time for sampling one parcel. The second step is an adaptive spatial sampling

design which is revised from Cox Jr (1999). This method does not require any statistical model

for the spatial distribution, instead it constructs an increasingly nonparametric approximation

to it as sampling proceeds. So, it is not a model-based sampling design. The procedures of the

second step are listed as below:

1. Sample n∗ previously unsampled locations in the area of concern. The method to sample
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the n∗ samples may be a proportionate stratified method.The whole database are stratified

with respect to the land use type.Based on the total number of parcels in each stratum, the

sample size from each stratum can be calculated in the proportionate stratified sampling

design, i.e., after we determine the sample size n∗(n∗ is not so big a number, and it is

definitely less than the total sample size n), for a stratum with population size Nh, the

sample size n∗h within the stratum will be calculated by n∗h = Nh

N × n
∗. And the method

to determine the specific sampling parcels can be a simple random sampling (SRS).

2. Place on a search list the k parcels with the zero/blank sample floor area observed so far.

The k parcels comprise the search list.

3. Measure the floor area from each of its previously unsampled immediate neighbors in the

sampling frame (Neighbors can be the parcels which are closest to a parcel from the east,

west, south and north directions). Remove each parcel from the list when it has been

measured.

4. Place onto the search list any parcel with zero/blank floor area from its immediate neigh-

bors which are defined and sampled in step 3.

5. Continue steps 3 and 4 until the search list is empty and the number of sampled parcels

reaches predetermined total sample size n.

3.1.2 Bayesian spatial sampling design

The second sampling design is a Bayesian sampling design. The procedures are as follow:

1. Assume that the spatial distribution of floor area follows a parametric model, say (x, y; q),

where q is a vector of parameters. Assume a prior probability density function for q, say,

fq(q).

2. Obtain any set of observed sample values for floor area at different locations. Here sample

size is n∗. And the method to specify the n∗ parcels can be a proportionate stratified

sampling design as described in the first sub-step of the second step in the two-step adaptive
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sampling design. After this, update beliefs about q by conditioning on the observed values

using Bayes’ rule. (This requires knowing or assuming a likelihood function relating q to

the observed values.)

3. Choose the terminal decision, a∗, to maximize the expected value of a utility function

u(c, b), where the expectation is taken with respect to the posterior (conditioned on ob-

served data) probability distribution for q.

4. Recursively choose the sampling locations and stopping rule via backward dynamic pro-

gramming to maximize expected utility.

5. Stop when the total number of sampled parcels reaches the total sample size n obtained

in the first step of the method in section 3.1.1.

Here the utility function is a bounded function, used in economic studies. Some examples of

the utility functions are u(x) = 1 − exp(−x/r); u(x, y) = ax + by,where a, b > 0; u(x, y) =

xayb,where a, b > 0 etc. A utility function has some properties such as monotonicity, convexity.

3.2 Pros and cons of each

Here two sampling designs are proposed. One is a nonparametric adaptive procedure. It

is not a model-based sampling design. The other is a Bayesian one which is a model-based

approach. It has been shown that model-based approach is the best choice (Brus and De Gruijter,

1997) when

1. We want to map the target structure.

2. Sample size large enough for calibrating a model of variation.

3. Strong autocorrelation exists from which we may profit in mapping, etc..

Our problem has the above characters. So, model-based sampling design is quite appropriate

here. Adaptive method is not a model-based method and is less mathematical than the Bayesian

method. But it is easier to implement. Bayesian method is more scientific.
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3.3 Recommendation

The two-phase adaptive sampling design is advocated here since it is easier to understand

and implement.

3.4 Imputation of the missing value

Having undertaken both phases of the adaptive spatial sampling design, one needs to proceed

with statistical inference and imputation. We have been asked to provide standard deviation

of our estimates, if possible. The contribution to statistical imputation mainly goes to Robin

(1987). Schafer (1997) proposed an imputation scheme as follow:

Denote the observed-data posterior as P (θ|Yobs), here, Yobs are the observed data. Denote

P (θ|Yobs, Ymis) as the complete-data posterior, here Ymis are the missing data.

1. Given a current guess θ(t) of the parameter, first draw a value of the missing data from

the conditional predictive distribution of Ymis,

Y
(t+1)
mis ∼ P (Ymis|Yobs, θ(t)) (3)

2. Conditioning on Y
(t+1)
mis , draw a new value of θ from its complete-data posterior,

θ(t+1) ∼ P (θ|Yobs, Y (t+1)
mis ) (4)

3. Repeating (3)-(4) from a starting value θ(0) yields a stochastic sequence {(θ(t), Y (t)
mis) :

t = 1, 2, ...} whose stationary distribution is P (θ|Ymis|Yobs), and the subsequences {θ(t) :

t = 1, 2, ...} and {Y (t)
mis := 1, 2, ...} have P (θ|Yobs) and P (Ymis|Yobs) as their misrespective

stationary distribution.

The above is a typical statistical imputation procedure. In that book, they provided an

example for this method in which the formulas for mean and variance were presented. And I am

presenting the method as follow:

Suppose Y = (y1, ..., yn) is an iid sample from a normal distribution with mean µ and
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variance ψ. Further suppose that only the first n1 elements of Y are observed and the remaining

n0 = n− n1 are missing. Use the iterating procedure, and after some derivation, we can get the

expectation of the tth iteration for the mean µ as follow:

E(µ(t)) = ȳobs (5)

and the variance of the mean:

V (µ(t)) = n−11 ψ (6)

Further estimator for ψ can be obtained using some data augmentation method Schafer (1997).

Therefore we can estimate the variance and stardard deviation for µ.

This is a parametric method which has the distributional assumption on the responses which

might not be that feasible. But it gives a general idea on the statistical imputation.Without the

assumption of the distribution on the responses, there exists a non-parametric method (Ning

and Cheng 2010) as below:

In Ning and Cheng’s (2010) method, they denoted the data as (Xi, Yi, δi), i = 1, 2, ..., n. The

covariates Xi are observed, and δi = 1 if Yi is observed, otherwise δi = 0. A nearest neighbor

(NN) estimator is defined as:

µNN =
1

n

∑
i=1

n{δiYi + (1− δi)mK(Xi)} (7)

Here mK(Xi) = 1
K

∑
j=1KYi(j), and {(Xi(j), Yi(j)) : δi(j) = 1, j = 1, ...,K} is a set of K

observed data pairs, and Xi(j) denote the jth nearest neighbor to Xi among all the covariates

X ′s corresponding to those Y
′

ks with δk = 1.

An asymptotic variance from Ning and Cheng (2010) is as follow:

σ2(µNN ) = V ar(Y ) + (1 +
1

K
)E[σ2(X)(1− P (X))] + E[

σ2(X)(1− P (X))2

P (X)
] (8)
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where P (X) = P (δ = 1|X,Y ) = P (δ = 1|X). This estimator for variance can be used to

claculate the statistics such as statndard deviation in our project.

References

Brus, D. and De Gruijter, J. (1997). Random sampling or geostatistical modelling? choos-

ing between design-based and model-based sampling strategies for soil (with discussion).

Geoderma, 80(1-2):1–44.

Cox Jr, L. (1999). Adaptive spatial sampling of contaminated soil. Risk Analysis, 19(6):1059–

1069.

Diggle, P. and Lophaven, S. (2006). Bayesian geostatistical design. Scandinavian Journal of

Statistics, 33(1):53–64.

Gao, S. and Hui, S. (2000). Estimating the incidence of dementia from two-phase sampling with

non-ignorable missing data. Statistics in medicine, 19(11-12):1545–1554.

Goodchild, M. F., Li, W., Schild, A., and Royal, N. (2010). Scag parcel database validation

report on accuracy of total floor space per parcel by ground truth trekking. Technical

report.

Gu, Y. and Arnott, R. (2011). Floor area data adjustment for the parcel database of greater los

angeles region. Technical report.

Hansen, M., Madow, W., and Tepping, B. (1983). An evaluation of model-dependent and

probability-sampling inferences in sample surveys. Journal of the American Statistical As-

sociation, pages 776–793.

Kumar, N. (2009). An optimal spatial sampling design for intra-urban population exposure

assessment. Atmospheric Environment, 43(5):1153–1155.

Lohr, S. (1999). Sampling: design and analysis. Thomson.

11



Ning, J. and Cheng, P. (2010). A comparison study of nonparametric imputation methods.

Statistics and Computing, pages 1–13.

Rao, J. (1979). Optimization in the design of samples surveys. Optimizing Methods in Statistics,

pages 419–434.

Reiter, J., Raghunathan, T., and Kinney, S. (2006). The importance of modeling the sampling

design in multiple imputation for missing data. Survey Methodology, 32(2):143–149.

Rubin, D. (1987). Multiple imputation for nonresponse in surveys. John Willey & Sons.

Schafer, J. (1997). Analysis of incomplete multivariate data, volume 72. Chapman & Hall/CRC.

Smith, P. (1988). Survey design optimization for estimating the exploitable biomass of a fish-

ery accounting for non-sampling errors. Journal of the Royal Statistical Society. Series C

(Applied Statistics), 37(3):370–384.

12


